Synthesis of novel tridentate ligand-based palladium catalyst and investigation of its reactivity towards Suzuki, Sonogashira and Heck coupling reactions

Document Type : Articles

Authors

1 Department of Chemistry, Kongju National University, Kongju, Chungnam, 32588, Republic of Korea

2 Department of Applied Chemistry, Karunya Institute of Technology and Sciences, Karunyar Nagar, Coimbatore, 641114, India

Abstract

We have demonstrated a simple and efficient route for the synthesis of a novel imine based tridentate ligand and its Pd-complex to investigate the C-C cross-coupling reactions, that involve column chromatography purification in only one step. The catalytic activity of the newly synthesized catalyst was studied for the Suzuki, Sonogashira and, Heck cross-coupling reactions under mild conditions. All synthesized molecules are thoroughly characterized by IR and NMR techniques. The pro-ligand was characterized by a single Crystal X-ray diffraction study. The catalyst has excellent activity and good yield was obtained with minimum catalyst loading. The obtained yields are good to excellent.

Graphical Abstract

Synthesis of novel tridentate ligand-based palladium catalyst and investigation of its reactivity towards Suzuki, Sonogashira and Heck coupling reactions

Highlights

  • We have synthesized a novel tridentate ligand and it’s Pd-complex.
  • It involves only one column chromatography purification step out of four steps of the reaction. 
  • This catalyst has excellent activity towards Suzuki, Sonogashira, and Heck reactions with low catalyst loading.

 

Keywords


[1] I. Shinkai, A. O. King, R. D. Larsen. Pure Appl. Chem. 66 (2007) 1551–1556.
[2] A. O. King, E. G. Corley, R. K. Anderson, R. D. Larsen, T. R. Verhoeven, P. J. Reider, Y. B. Xiang, M. Belley, Y. Leblanc, M. Labelle, P. Prasit, R. J. Zamboni. J. Org. Chem. 58 (1993) 3731–3735.
[3] Y. Yuan, T. J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, J. Huang. Nat. Mater. 10 (2011) 296–302.
[4] R. A. DeVries, A. Mendoza. Organometallics. 13 (1994) 2405–2411.
[5] C. Torborg, M. Beller. Adv. Synth. Catal.  351 (2009) 3027–3043.
[6] H. Jung, H. Hwang, K. M. Park, J. Kim, D. H. Kim, Y. Kang. Organometallics. 29 (2010) 2715–2723.
[7] D. J. Burke, D. J. Lipomi. Energy Environ. Sci. 6 (2013) 2053–2066.
[8] C. Bracher, H. Yi, N. W. Scarratt, R. Masters, A. J. Pearson, C. Rodenburg, A. Iraqi, D. G. Lidzey. Org. Electron. Physics, Mater. Appl. 27 (2015) 266–273.
[9] A. Suzuki. Chem. Commun.  (2005) 4759–4763.
[10] R. Martin, S. L. Buchwald. Acc. Chem. Res. 41 (2008) 1461–1473.
[11] M. Shibasaki, C. D. J. Boden, A. Kojima. Tetrahedron. 53 (1997) 7371–7395.
[12] W. Cabri, I. Candiani. Acc. Chem. Res. 28 (1995) 2–7.
[13] H. Doucet, J. C. Hierso. Angew. Chemie - Int. Ed. 46 (2007) 834–871.
[14] T. Mino, S. Suzuki, K. Hirai, M. Sakamoto, T. Fujita. Synlett. 9 (2011) 1277–1280.
[15] V. B. Phapale, D. J. Cárdenas. Chem. Soc. Rev. 38 (2009) 1598–1607.
[16] J. Zhou, G. C. Fu. J. Am. Chem. Soc. 125 (2003) 14726–14727.
[17] L. Xue, Z. Lin. Chem. Soc. Rev. 39 (2010) 1692–1705.
[18] X. Chen, K. M. Engle, D. Wang, J. Yu. Angew. Chemie - Int. Ed. 48 (2009) 5094–5115.
[19] W. J. Marshall, V. V. Grushin. Organometallics. 22 (2003) 555–562.
[20] N. Sharma, M. Asthana, R. Kumar, K. Mishra, R. M. Singh. Tetrahedron Lett. 55 (2014) 2348–2351.
[21] A. Y. Habashneh, O. O. Dakhil, A. Zein, P. E. Georghiou. Synth. Commun. 39 (2009) 4221–4229.
[22] A. Zhdanko, M. Ströbele, M. E. Maier. Chem. - A Eur. J. 18 (2012) 14732–14744.
[23] A. A. Mikhaylov, A. D. Dilman, R. A. Novikov, Y. A. Khoroshutina, M. I. Struchkova, D. E. Arkhipov, Y. V. Nelyubina, A. A. Tabolin, S. L. Ioffe. Tetrahedron Lett. 57 (2016) 11–14.
[24] D. Seomoon, P. H. Lee. ChemInform. 39 (2008) 1165–1168.
[25] P. W. N. M. Van Leeuwen, P. C. J. Kamer. Catal. Sci. Technol. 8 (2018) 26–113.
[26] J. D. Higgins, L. Neely, S. Fricker, J. Matthey. J. Inorg. Biochem. 49 (1993) 149–156.
[27] J. Quirante, D. Ruiz, A. Gonzalez, C. López, M. Cascante, R. Cortés, R. Messeguer, C. Calvis, L. Baldomà, A. Pascual, Y. Guérardel, B. Pradines, M. Font-Bardía, T. Calvet, C. Biot. J. Inorg. Biochem. 105 (2011) 1720–1728.
[28] P. S. Fier, K. M. Maloney. Angew. Chemie - Int. Ed. 56 (2017) 4478–4482.
[29] A. H. Viuff, M. Heuckendorff, H. H. Jensen. Org. Lett. 18 (2016) 5773–5775.
[30] R. Sitaramaiah, S. Yaroslavsky. J. Am. Chem. Soc. 87 (1965) 3272–3273.
[31] E. Lourdusamy, L. Yao, C. M. Park. Angew. Chemie - Int. Ed. 49 (2010) 7963–7967.
[32] B. K. Kuruba, N. Shariff, S. Vasanthkumar, L. Emmanuvel. Synth. Commun. 45 (2015) 2454–2461.
[33] B. K. Kuruba, L. Emmanuvel, B. Sridhar, S. Vasanthkumar. Tetrahedron. 73 (2017) 2674–2681.
[34] J. F. da S. Petruci, A. A. Cardoso. Microchem. J. 106 (2013) 368–372.
[35] K. C. Nicolaou, P. B. Rao, J. Hao, M. V. Reddy,G. Rassias, X. Huang, D. Y. K. Chen,  S. A. Snyder. Angew. Chem. Int. Ed. 42  (2003) 1753 – 1758.
[36] J. M. Makdissi, J. K. Vandavasi, S. G. Newman. Org. Lett. 20 (2018) 4094−4098.
[37] P. Lei, G. Meng, Y. Ling, J. An, M. Szostak J. Org. Chem. 82 (2017) 6638−6646.
[38] M. R. Yadav, M. Nagaoka, M. Kashihara, R. L. Zhong, T. Miyazaki, S. Sakaki, Y. Nakao. J. Am. Chem. Soc. 139 (2017) 9423−9426.
[39] J. Han, Y. Liu, R. Guo. J. Am. Chem. Soc. 131 (2009) 2060–2061.
[40] Y. Liang, Y. X. Xie, J.H. Li. J. Org. Chem. 71 (2006) 379-381.
[41] C. Yi, R. Hua.J. Org. Chem. 71 (2006) 2535-2537.
[42] K. T. Neumann, S. R. Laursen, A. T. Lindhardt, B. B. Andersen, T. Skrydstrup. Org. Lett. 16 (2014), 2216−2219.
[43] R. Mukhopadhyay, N. G. Kundu. Synlett. 7 (2001) 1143–1145.
[44] K. B. Hong, C. W. Lee, E. K. Yum. Tetrahedron Letters 45 (2004) 693–697.
[45] G.Z. Wang, R. Shang, W.M. Cheng, Y. Fu. J. Am. Chem. Soc. 139 (2017) 18307−18312.
[46] E. A. B. Kantchev, G. R. Peh, C. Zhang, J. Y. Ying. Org. Lett. 10 (2008) 3949-3952.
[47] W. B. Reid, J. J. Spillane, S. B. Krause, D. A. Watson. J. Am. Chem. Soc. 138 (2016) 5539–5542.