The Study of Photocatalytic Degradation Mechanism under Visible Light Irradiation on BiOBr/Ag Nanocomposite

Document Type: Articles


1 Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran

2 University of Applied Science and Technology (UAST), Ghand Center, Karaj, Iran.


Due to the pollution of dyeing and textile industry wastewaters in different colors and the need to remove these pollutants from the wastewaters, it is necessary to study and develop effective and efficient technology solutions required. To remove dye from aqueous solutions, photodegradation is employed as an effectively simple way. Thus, the BiOBr photocatalyst was chemically made by synthesis using a facile method. To enhance its photocatalytic activity, the synthesized BiOBr nanoplates were then functionalized with Ag NPs forming the modified BiOBr/Ag photocatalyst. The BiOBr/Ag nanocomposite was synthesized with different percentages of Ag to determine its optimized percentage in the photocatalytic process. The characterization techniques of PL, DRS, XRD, EDX, SEM, FT-IR, and Raman were used to confirm the prepared samples. The power-down white light lamp was used in the photocatalytic process, which showed good degradation. The photocatalytic activity of prepared BiOBr/Ag was investigated by the degradation of the 2,4-dichlorophenol, methyl orange, and rhodamine B. The effective separation and inhibited recombination of photo-generated electron-hole pairs resulted from the high photocatalytic activity.

Graphical Abstract

The Study of Photocatalytic Degradation Mechanism under Visible Light Irradiation on BiOBr/Ag Nanocomposite


  • Novel BiOBr/Ag nanocomposites as efficient photocatalysts are reported.
  • The BiOBr/Ag nanocomposite displayed high activity degradations of different pollutants.
  • The nanocomposite exhibited remarkable stability and reusability properties.
  • The photodegradation mechanisms are proposed and discussed in this research.


[1] Y. Zhou, J. Lu, Y. Zhou, Y. Liu, Environ. Pollut.  252 (2019) 352-365.

[2] E.N. Zare, A. Motahari, M. Sillanpää, Environ. Res. 162 (2018) 173-195.

[3] L. Ye, Y. Su, X. Jin, H. Xie, C. Zhang, Environ. Sci.: Nano. 1 (2014) 90-112.

[4] N. Assi, P.A. Azar, M.S. Tehrani, S.W. Husain, J. Iran. Chem. Soc. 13(9) (2016) 1593-1602.

[5] H. R. Pouretedal, A. M. Sohrabi, J. Iran. Chem. Soc. 13(1) (2016) 73-79.

[6] Y. Mi, M. Zhou, L. Wen, H. Zhao, Y. Lei, Dalton Trans. 43 (2014) 9549-9556.

[7] X. Cao, Z. Lu, L. Zhu, L. Yang, L. Gu, L. Cai, J. Chen, Nanoscale. 6 (2014) 1434-1444.

[8] H. Zhang, Y. Yang, Z. Zhou, Y. Zhao, L. Liu, J. Phys. Chem. C. 118 (2014) 14662-14669.

[9] Z. Jiang, B. Huang, Z. Lou, Z. Wang, X. Meng, Y. Liu, X. Qin, X. Zhang, Y. Dai, Dalton Trans. 43 (2014) 8170-8173.

[10] C. Bi, J. Cao, H. Lin, Y. Wang, S. Chen, RSC Adv. 6 (2016) 15525-15534.

[11] M. Zahedifar, M. Shirani, A. Akbari, N. Seyedi, Cellulose. 26(11) (2019) 6797-6812.

[12] Q. T. H. Ta, S. Park, J. S. Noh, J. Colloid Interface Sci. 505 (2017) 437-444.

[13] S. Naghizadeh-Alamdari, A. Habibi-Yangjeh, M. Pirhashemi, Appl. Surf. Sci. 40 (2015) 111-120.

[14] J. Manna, T. P. Vinod, K. Flomin, R. Jelinek, J. Colloid Interface Sci. 460 (2015) 113-118.

[15] J. Lv, Q. Zhu, Z. Zeng, M. Zhang, J. Yang, M. Zhao, W. Wang, Y. Cheng, G. He, Z. Sun, J. Phys. Chem. Solids. 111 (2017) 104-109.

[16] X. F. Zhang, Z. G. Liu, W. Shen, S. Gurunathan, Int. J. Mol. Sci.17 (2016) 1534-1567.

[17] S. Gurunathan, J.H. Park, J.W. Han, J. Kim, H. Int. J. Nanomed.10(2015) 4203-4223.

[18] W. R. Li, X.B. Xie, Q. S. Shi, H. Y. Zeng, O. Y. You-Sheng, Y.B. Chen, Appl. Microbial. biotechnol. 85 (2010) 1115-1122.

[19] X. Zhu, X. Liang, P. Wang, Y. Dai, B. Huang, Appl. Surf. Sci. 456 (2018) 493-500.

[20] Y. C. Yao, X. R. Dai, X. Y. Hu, S. Z. Huang, Z. Jin, Appl. Surf. Sci.  387 (2016) 469-476.

[21] M. Yaghoubi-berijani, B. Bahramian, S. Zargari, Res. Chem. Intermed. 46 (2020) 197–213.

[22] R. Saraf, C. Shivakumara, S. Behera, N. Dhananjaya, H. Nagabhushana, RSC Adv. 5 (2015)  9241-9254.

[23] A. Esmaeili, M. H. Entezari, RSC Adv. 5 (2015) 97027-97035.

[24] L. Zhang, Z. Wu, L. Chen, L. Zhang, X. Li, H. Xu, H. Wang, G. Zhu, Solid State Sci. 52(2016) 42-48.

[25] J. Cao, B. Xu, H. Lin, B. Luo, S. Chen, Chem. Eng. J. 185 (2012) 91-99.

[26] S. Yao, R. Zheng, R. Li, Y. Chen, X. Zhou, J. Luo, J. Taiwan Inst. chem. Eng. 100 (2019) 186-193.

[27] Y. T. Prabhu, K. V. Rao, V. S. S. Kumar, B. S. Kumari, World J. Nano Sci. Eng. 4 (2014) 21-28.

[28] A. B. Andrade, N. S. Ferreira, M. E. Valerio, RSC Adv. 7(43) (2017) 26839-26848.

[29] H. Cui, Y. Zhou, J. Mei, Z. Li, S. Xu, C. Yao, J. Phys. Chem. Solids. 112 (2018) 80-87.

[30] H. Zhang, C.G. Niu, S.F. Yang, G.M. Zeng, RSC Adv. 6 (2016) 64617-64625.

[31] S. Hu, L. Jiang, Y. Tu, Y. Cui, B. Wang, Y. Ma, Y. Zhang, J. Taiwan Inst. Chem. Engrs. 86 (2018) 113-119.

[32] S. Lee, Y. Park, D. Pradhan, Y. Sohn, J. Ind. Eng. chem. 35 (2016) 231-252.

[33] H. Liu, Y. Hu, Z. Zhang, X. Liu, H. Jia, B. Xu, Appl. Surf. Sci.  355(2015) 644-652.

[34] B.H. Bielski, D.E. Cabelli, Active oxygen in chemistry. Springer, Dordrecht (1995) 66-104.

[35] N. Omrani, A. Nezamzadeh-Ejhieh, Sep. Purif. Technol. 235 (2020) 116228-116232.

[36] C. Chen, W. Ma, J. Zhao, Chem. Soc. Rev. 39(11) (2010) 4206-4219.

[37] M. Babaahamdi-Milani, A. Nezamzadeh-Ejhieh, J. Hazard. Mater. 318 (2016) 291-301.

[38] G. Jiang, R. Wang, X. Wang, X. Xi, R. Hu, Y. Zhou, S. Wang, T. Wang, W. Chen, ACS Appl. Mater. Interfaces. 4(9) (2012) 4440-4444.

[39] C. Yu, C. Fan, X. Meng, K. Yang, F. Cao, X. Li, React. Kinet. Mech. Catal. 103 (2011) 141-151.

[40] J. Di, J. Xia, M. Ji, B. Wang, S. Yin, Y. Huang, Z. Chen, H. Li, Appl. Catal. B Environ. 188(2016) 376-387.

[41] Y. Guo, J. Zhang, D. Zhou, S. Dong, J. Mol. Liq. 262 (2018) 194-203.