Sol-gel synthesis of nanoporous γ-alumina using TX-100 or gelatin/TX-100 mixture as effective catalysts for dehydration of alcohols

Document Type : Articles


School of Chemistry, Damghan University, Damghan 36716-41167, Iran


In this study, the nanoporous γ-alumina catalysts were prepared by the sol-gel method using hydrolysis of aluminum isopropoxide in the presence of TX-100 or gelatin/TX-100 mixture. Catalysts were characterized by XRD, FT-IR, TEM, BET-BJH and N2 adsorption-desorption isotherms. To investigate reactivity and selectivity of the synthesized catalysts, dehydration reaction of 2-octanol was carried out in a plug flow vertical reactor at 200 °C. The main products of elimination reaction were 1-octene, 3-octene, cis- and trans-2-octene, which were identified by GC-MS. The reaction conversion and yield of the products were determined using GC. The prepared catalysts had nanometer-sized pores, high surface area and large pore volume. Their catalytic activity for dehydration of 2-octanol was higher than non-porous γ-alumina catalysts. These compounds could be used as effective catalysts for dehydration of alcohols.

Graphical Abstract

Sol-gel synthesis of nanoporous γ-alumina using TX-100 or gelatin/TX-100 mixture as effective catalysts for dehydration of alcohols


  • Nanoporous γ-alumina catalysts were prepared using hydrolysis of aluminum isopropoxide in the presence of TX-100 or gelatin/TX-100
  • Catalysts were characterized by XRD, FT-IR, BET-BJH, TEM and N2 adsorption-desorption isotherms
  • Reactivity and selectivity of catalysts were examined using dehydration reaction of 2-octanol
  • The prepared catalysts have nanometer-sized pores, high surface areas and large pore volumes
  • High conversion and high selectivity for formation of 2-alkenes were found for g-alumina catalyst prepared using TX-100
  • The gelatin in gelatin/TX-100 catalyst reduces the size of catalyst pores which causes to increase of 1-ene formation


[1] J. W. Anthony, R. A. Bideaux, K. W. Bladh, M. C. Nichols, Handbook of Mineralogy III (Halides, Hydroxides, Oxides), Mineralogical Society of America, Chantilly, VA, US, 1997.
[2] P. S. Santos, H. S. Santos, S. P. Toledo, Standard transition aluminas: Electron microscopy studies, Mater. Res. 3 (2000) 104-114.
[3] W. Smith, R. Chapman, Chemical Process Industries, Vol. 1 inorganic chemicals and allied industries, CBS publishers & distributors Pvt Ltd, India, 2016.
[4] H. A. Dabbagh, K. Taban, M. Zamani, Effects of vacuum and calcination temperature on the structure, texture, reactivity, and selectivity of alumina: Experimental and DFT studies, J. Mol. Catal. A: Chem. 326 (2010) 55-68.
[5] R. T. Yang, Adsorbents: Fundamentals and Applications, John Wiley & Sons Inc., New York, 2003.
[6] L. K. Hudson, C. Misra, A. J. Perrotta, K. Wefers, F. S. Williams, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2005.
[7] Q. Liu, A. Wang, X. Wang, P. Gao, X. Wang, T. Zhang, Synthesis, characterization and catalytic applications of mesoporous -alumina from boehmite sol, Microporous Mesoporous Mater. 111 (2008) 323-333.
[8] M. Zamani, A. Moradi Delfani, M. Jabbari, Scavenging performance and antioxidant activity of γ-alumina nanoparticles towards DPPH free radical: Spectroscopic and DFT-D studies, Spectrochim. Acta A. Mol. Biomol. Spectrosc. 201 (2018) 288-299.
[9] M. Zamani, H. A. Dabbagh, Adsorption behavior of the primary, secondary and tertiary alkyl, allyl and aryl alcohols over nanoscale (1 0 0) surface of γ-alumina, J. Nanoanal. 1 (2014) 21-30.
[10] M. A. Christiansen, G. Mpourmpakis, D. G. Vlachos, Density functional theory-computed mechanisms of ethylene and diethyl ether formation from ethanol on γ-Al2O3 (100), ACS Catal. 3 (2013) 1965-1975.
[11] Z. Fang, Y. Wang, D. A. Dixon, Computational study of ethanol conversion on Al8O12 as a Model for γ-Al2O3, J. Phys. Chem. C 119 (2015) 23413-23421.
[12] K. Larmier, C. Chizallet, N. Cadran, S. Maury, J. Abboud, A. F. Lamic-Humblot,  ́E. Marceau, H. Lauron-Pernot, Mechanistic investigation of isopropanol conversion on alumina catalysts: Location of active sites for alkene/ether production, ACS Catal. 5 (2015) 4423-4437.
[13] Z. Zuo, P. Han, J. Hu, W. Huang, Effect of surface hydroxyls on DME and methanol adsorption over γ-Al2O3 (hkl) surfaces and solvent effects: A density functional theory study, J. Mol. Model. 18 (2012) 5107-5111.
[14] Z. Zuo, W. Huang, P. Han, Z. Gao, Z. Li, Theoretical studies on the reaction mechanisms of AlOOH- and γ-Al2O3-catalysed methanol dehydration in the gas and liquid phases, Appl. Catal. A Gen. 408 (2011) 130-136.
[15] H. A. Dabbagh, M. Zamani, B. H. Davis, Nanoscale surface study and reactions mechanism of 2-butanol over the γ-alumina (1 0 0) surface and nanochannel: A DFT study, J. Mol. Catal. A: Chem. 333 (2010) 54-68.
[16] B. Chen, J. Lin, X. Chen, Y. Zheng, H. Zhang, F. Huang, Y. Xiao, Y. Zheng, Controllable synthesis of mesoporous alumina as support for palladium catalysts and reconstruction of active sites during methane combustion, Int. J. Hydrogen Energy 45 (2020) 15142-15156.
[17] X. Song, Y. Song, J. Wang, Q. Liu, Z. Duan, Insights into the pore-forming effect of polyvinyl butyral (PVB) as the polymer template to synthesize mesoporous alumina nanofibers via electrospinning, Ceram. Int. 46 (2020) 9952-9956.
[18] C. Hu, Y. Liu, Q. Cao, L. Bian, Synthesis, characterization, and application of mesoporous alumina prepared from pseudo-boehmite as precursor, Chem. Phys. Lett. 742 (2020) 137130.
[19] R. Ambade, R. Chakravarty, J. Bahadur, B. Ganjave, D. Sen, S. Chakraborty, A. Dash, Mechanochemically synthesized mesoporous alumina: An advanced sorbent for post-processing concentration of 131I for cancer therapy, J. Chromatogr. A 1612 (2020) 460614.
[20] R. Chakravarty, J. Bahadur, S. Lohar, H. D. Sarma, D. Sen, R. Mishra, S. Chakraborty, A. Dash, Solid state synthesis of mesoporous alumina: A viable strategy for preparation of an advanced nanosorbent for 99Mo/99mTc generator technology, Micropor. Mesopor. Mat. 287 (2019) 271-279.
[21] M. Derakhshani, A. Hashamzadeh, M. M. Amini, Novel synthesis of mesoporous crystalline γ-alumina by replication of MOF-5-derived nanoporous carbon template, Ceram. Int. 44 (2018) 17102-17106.
[22] D. Liu, H. Zhu, J. Zhao, L. Pan, P. Dai, X. Gu, L. Li, Y. Liu, X. Zhao, Synthesis of mesoporous γ-Al2O3 with spongy structure: In-situ conversion of metal-organic frameworks and improved performance as catalyst support in hydrodesulfurization, Materials 11 (2018) 1067.
[23] G. Mohammadnezhad, O. Akintola, W. Plass, F. H. Schacher, F. Steiniger, M. Westermann, Facile synthesis of highly thermally stable nanoporous γ-aluminas from aluminum alkoxide precursors, RSC Adv. 5 (2015) 49493-49499.
[24] D. Berger, G. A. Traistaru, C. Matei, Influence of different templates on the morphology of mesoporous aluminas, Cent. Eur. J. Chem. 10 (2012) 1688-1695.
[25] S. Chauhan, J. Jyoti, G. Kumar, Non-ionic surfactant interactions in aqueous gelatin solution: A physico-chemical investigation, J. Mol. Liq. 159 (2011) 196-200.
[26] H. Huang, L. Wang, Y. Cai, C. Zhou, Y. Yuan, X. Zhang, H. Wan, G. Guan, Facile fabrication of urchin-like hollow boehmite and alumina microspheres with a hierarchical structure via Triton X-100 assisted hydrothermal synthesis, Cryst. Eng. Comm. 17 (2015) 1318-1325.
[27] K.B. Djagnya, Z. Wang, S. Xu, Gelatin: A valuable protein for food and pharmaceutical industries, Crit. Rev. Food Sci. Nutr. 41 (2010) 481-492. 
[28]  A. S. K. de Oliveira, A. P. F. Paulista, A. E. V. de Alencar, T. P. Braga, Gelatin template synthesis of aluminum oxide and/or silicon oxide containing micro/mesopores using the proteic sol-gel method, J. Nanomater. (2017) 2504796.
[29] M. Sobhani, H. Tavakoli, M.D. Chermahini, M. Kazazi, Preparation of macro-mesoporous γ-alumina via biology gelatin assisted aqueous sol-gel process, Ceram. Int. 45 (2019) 1385-1391.
[30] H. A. Dabbagh, M. Zamani, Catalytic conversion of alcohols over alumina–zirconia mixed oxides: Reactivity and selectivity, Appl. Catal. A: General 404 (2011) 141-148.
[31] H. A. Dabbagh, M. Naderi, M. Zamani, Effect of NaNO2, HNO3 and H2SO4 on the structure and reactivity of gamma-alumina, Iran. J. Catal. 10 (2020) 47-55.
[32] J. M. Saniger, Al-O infrared vibrational frequencies of γ-alumina, Mater. Lett. 22 (1995) 109-113.
[33] V. Gonzalez-Pena, I. Dıaz, C. Marquez-Alvarez, E. Sastre, J. Perez-Pariente, Thermally stable mesoporous alumina synthesized with non-ionic surfactants in the presence of amines, Microporous Mesoporous Mater. 44-45 (2001) 203-210.
[34] S. A. Bagshaw, T. J. Pinnavaia, Mesoporous alumina molecular sieves, Angew. Chem. Int. Ed. Engl. 35 (1996) 1102-1105.
[35] K. S.W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Roquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem. 57 (1985) 603-619.
[36] K. S. W. Sing, R. T. Williams, Physisorption hysteresis loops and the characterization of nanoporous materials, Adsorpt. Sci. Technol. 22 (2004) 773-782.
[37] S. Chokkaram, R. Srinivasan, D. R. Milburn, B. H. Davis, Conversion of 2-octanol over nickel-alumina, cobalt-alumina, and alumina catalysts, J. Mol. Catal. A: Chem. 121 (1997) 157-169.
[38] B. H. Davis, Influence of pretreatment of alumina on the dehydrogenation: Dehydration selectivity for 2-octanol, J. Catal. 26 (1972) 348-351.
[39] B. H. Davis, Olefin selectivity for the dehydration of 2-octanol by alumina and thoria, J. Org. Chem. 37 (1972) 1240-1244.
[40] H. A. Dabbagh, J. Mohammad Salehi, New transition-state models and kinetics of elimination reactions of tertiary alcohols over aluminum oxide, J. Org. Chem. 63 (1998) 7619-7627.
[41] M. Zamani, H. A. Dabbagh, Surface modification of γ-alumina by NaNO2, NaNO3, HNO2, HNO3 and H2SO4: A DFT-D approach, Iran. J. Catal. 6 (2016) 345-353.
Volume 10, Issue 4
December 2020
Pages 295-305
  • Receive Date: 17 February 2020
  • Revise Date: 10 October 2020
  • Accept Date: 11 October 2020
  • First Publish Date: 09 November 2020