Using of modified sugarcane bagasse as a green and inexpensive catalyst for the synthesis of indeno[1,2-b]quinolin-8-one derivatives

Document Type : Letters

Authors

Department of chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, Iran.

Abstract

Chemical grafting of 3-aminipropyl triethoxysilane to carbonized bagasse and acidification of amino groups leads us to introduce a new, efficient and green solid acid catalyst. We used the Fourier-transform infrared spectroscopy (FT-IR), X-Ray Diffraction (XRD), Thermogravimetric analysis (TGA), Field Emission Scanning Electron Microscope (FE-SEM), elemental-mapping and Energy Dispersive X-ray spectroscopy (EDX) for the characterization of the catalyst. This novel catalyst efficiently used to the synthesis of benzo[h]indenoquinolin derivatives and the products were obtained with 80–95% of yields at 3-5 h with high purity. All of the products were characterized by FT-IR, 1H and 13CNMR spectroscopies and compared with authentic samples. Our protocol offers several significant advantages, such as easy preparation of catalyst, green nature of catalyst and reaction media, high yields, good reaction times and easy workup.  

Graphical Abstract

Using of modified sugarcane bagasse as a green and inexpensive catalyst for the synthesis of indeno[1,2-b]quinolin-8-one derivatives

Highlights

  • Using of bagasse as an unusable material for the synthesis of a green catalyst.
  • Introducing new green method for the preparation of quinoline derivatives.
  • Catalysis under ethanol reflux conditions as a green media.
  • The generality of the method, high yields, and short reaction times.

Keywords


[1]C. H. Tseng, C. C. Tzeng, C. L. Yang, P. J. Lu, Y. P. Liu, H. L. Chen, C. Y. Chen, C. N. Yang, Y. L. Chen, Mol. Divers, 17 (2013) 781–799.
[2] C. H. Tseng, C. C. Tzeng, C. L. Yang, P. J. Lu, H. L.Chen, H. Y. Li, Y. C. Chuang, C. N. Yang, Y. L.Chen, J. Med. Chem. 53 (2010) 6164–6179.
[3] C. H. Tseng, R. W. Lin, Y. L.Chen, G. J. Wang, M. L. Ho, C. C. Tzeng, J. Med. Chem. 54 (2011) 3103–3107.
[4] T. Utsugi, K. Aoyagi, T. Asao, S. Okazaki, Y. Aoyagi,M. Sano, K. Wierzba, Y. Yamada, Jpn. J. Cancer Res.88 (1997) 992–1002.
[5] M. Yamato, Y. Takeuchi, K. Hashigaki, Y. Ikeda, C. Ming-rong, K. Takeuchi, M. Matsushima, T. Tsuruo, T. Tashiro, J Med Chem. 32 (1989) 1295 - 1300.
[6] A. Rampa, A. Bisi, F. Belluti, S. Gobbi, P. Valenti, V. Andrisano, V. Cavrini, A. Cavalli, M. Recanatini, Bioorg Med Chem, 8 (2000) 497-506.
[7] R. S. Upadhayaya, P. D. Shinde, A. Y. Sayyed, S. A. Kadam, A. N. Bawane, A. Poddar, O. Plashkevych, A.Foldesic, J. Chattopadhyaya, Org. Biomol. Chem. 8(2010) 5661–5673.
[8] R. S. Upadhayaya, S. V. Lahore, A. Y. Sayyed, SS. Dixit, P. D. Shinde, J. Chattopadhyaya, Org. Biomol. Chem.8 (2010) 2180–2197.
[9] L. W. Deady, J. Desneves, A. J. Kaye, G. J. Finlay, B. C. Baguley, W. A. Denny. Bioorg Med Chem. 8 (2000) 977-984.
[10] X. Lu, J. L. Petersen, K. K. Wang. Org Lett. 5 (2003) 3277-3280.
[11] K. Ahmed, B. Dubey, S. Nadeem, B. Shrivastava, P. Sharma, Chin. Chem. Lett. 27 (2016) 721-725.
[12] PN. Sudhan, M.  Ghashang, S. S. Mansoor, Iran J Sci. Technol. Trans Sci. 42 (2018) 1895–1904.
[13] F. Shirini, S. Sarvi Beigbaghlou, S. V. Atghia, S. A. Mousazadeh, Dyes Pigm. 97 (2013) 19-25.
[14] C. Jiang,   Z. Xiong,  S. Jin,   P. Gao,   Y. Tang,   Y. Wang,   C. Du,   X. Wang,   Y. Liu,   B. Lin,   Y. Liu,  M. Cheng, Chem. Commun., 52 (2016) 11516-11519.
[15] A. Mondal, C. Mukhopadhyay, ACS Comb. Sci. 17 (2015) 404–408.
[16] S. Kumari, M. Rajeswari, J. M. Khurana, Synth. Commun, 46 (2016) 387-394.
[17] J. Meesin, M. Pohmakotr, V. Reutrakul, D. Soorukram, P. Leowanawat, S. Saithong, C. Kuhakarn, Org. Lett. 19 (2017) 6546–6549.
[18] N. G. Kozlov, K. N. Gusak, Russ. J. Org. Chem. 42 (2006) 1668−1674.
[19] M. Mamaghani, T. Hosseyni Larghani, J.Chem.Res. 36 (2012) 235-237.
[20] N. Ghaffari Khaligh, Chinese J. Catal. 35 (2014) 474–480.
[21] S. S. Mansoor, M. Ghashang, K. Aswin, Res. Chem. Intermed. 41 (2015) 6907–6926.
[22] A. Maleki, N. Nooraie Yeganeh, Appl. Organometal. Chem. 31 (2017) e: 3814.
[23] S. Jiang, M. Shen, F. R. Sheykhahmad, Open Chemistry, 18 (2020) 648–662.
[24] B.B. F. Mirjalili, R. Zare Reshquiyea, RSC. Adv. 5 (2015) 15566-15571.
[25] B. Sadeghi, I. Zarepour, J. Nanostruct. Chem. 5 (2015) 305-311.
[26] S. Dehghanpoor, B. Sadeghi, M. Mosslemin, Bulg.Chem.Commun. 50 (2018) 18-22.
[27] F.Shirini, S. Akbari Dadamahaleh, A. Mohammad Khah, A. R. Aliakbar, C. R.Chimie.16 (2013) 207–216.
[28] M. Seddighi, F. Shirini, O. Goli Jolodar, RSC.Adv. 6 (2016) 23564-23570.
[29] W. Yu , L. Wei, C. Xiu-Mei , S. Yang , X. Hai-Qiang, X. Hua-Hong, Y. Rui, P.Li-Ling , M.Rui, Y. Cai Hui, Y. Wei, B. Rong Cheng, W. Hui, Lett.Org.Chem.6 (2009) 456-461.
[30] C. Guo, F. Baishan, Bioresource.Technol. 102 (2011) 2635–2640.
[31] Y.Shang, Y. Jiang, Gao, J. Energ.Source.Part.A 37 (2015) 1039–1045.
[32] D. Yong-Ming, C. Kung Tung, W. YuJie, C. Chiing Chang, Int.J. Chem.Eng. 5 (2014) 276-280.
[33] Z. Danlin, L. Shenglan, G. Wanjun, W. Guanghui, Q. Jianghua, C. Hongxiang, Appl.Catal.A. Gen 469 (2014) 284–289.
[34] S.Molaei, S. Javanshir, Green. Chem. Lett. Rev. 11 (2018) 275–285.
[35] S. Mengxiao, L. Tianhang, Z. Zhaoyuan, W. Nana, X.Aming, L. Xuliang, W. Yuan, W.Fan, W. Mingyang, RSC.Adv. 5 (2015) 84406-84409.
[36] S. Sarvi Beigbaghlou, R. Javad Kalbasi, K. Marjani, A. Habibi, Catal. Lett.148 (2018) 2446–2458.
[37] A. K. Chandel, S. S. Da Silva, W. Carvalho, O. V. Singh,  J.Chem.Technol.Biotechnol. 87 (2012) 11–20.
[38] E. Rostami, S. Hamidi Zare, ChemistrySelect, 4 (2019), 13295 – 13303.