Magnesium-iron bimetal oxides as an effective magnetized solid-base catalyst for the synthesis of substituted 2-aminthiophenes

Document Type: Articles

Authors

Department of Chemistry, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas 7915893144, Iran

Abstract

< p>Mg-Fe bi-metal oxide was prepared and utilized as a magnetized renewable solid base catalyst for formation of 2-aminothiophenes by means of Gewald’s reaction. The prepared heterogeneous basic solid catalyst can be separated by a magnet and reused without considerable wastage in this activity. The structure of the aforementioned magnetized basic nano-catalyst was studied by XRD (X-ray diffraction), SEM (scanning electron microscopy), TEM (transmission electron microscopy), EDS (energy dispersive x-ray spectroscopy) and VSM (vibrating sample magnetometry) techniques. The present methodology offers several advantages such as high yields of products, shorter reaction times, environmentally friendly conditions, low catalyst dosage, high endurance and facile work-up.

Graphical Abstract

Magnesium-iron bimetal oxides as an effective magnetized solid-base catalyst for the synthesis of substituted 2-aminthiophenes

Highlights

•        A magnetic solid base nano-catalyst was synthesized for 2-amniothiophenes synthesis.

•        Mg-Fe bi-metal oxide shows high efficiency for 2-amniothiophenes synthesis.

•        The prepared solid base catalyst can be recovered for five courses without a significant reduction in its efficiency.

Keywords


[1] K. Bozorov, L. F. Nie, J. Zhao, H. A. Aisa, Eur. J. Med. Chem. 140 (2017) 465-493.

[2] K. Bozorov, H. R. Ma, J. Y. Zhao, H. Q. Zhao, H. Chen, K. Bobakulov, X. L. Xin, B. Elmuradov, K. Shakhidoyatov, H. A. Aisa, Eur. J. Med. Chem. 84 (2014) 739-745.

[3] Z. Puterová, A. Krutošíková, D. Végh, Arkivoc 1 (2010) 209-246.

[4] Z. Puterová, A. Krutošíková, D. Végh, Nova Biotechnol. 9 (2009) 167-73.

[5] Y. Huang, A. Dömling, Mol. Divers. 15 (2011) 3-33.

[6] X. G. Huang, J. Liu, J. Ren, T. Wang, W. Chen, B. B. Zeng, Tetrahedron 67 (2011) 6202-6205.

[7] K. Gewald, Angew. Chem. Int. Ed. 73 (1961) 114-114.        

[8] N. Erfaninia, R. Tayebee, E. L. Foletto, M. M. Amini, M. Dusek, F. M. Zonoz, Appl. Organomet. Chem. 32 (2018) 4047.

[9] F. Javadi, R. Tayebee, B. Bahramian, Appl. Organomet. Chem. 31 (2017) 3779.

[10] M. E. Khalifa, W. M. Algothami, J. Mol. Struct. 1207 (2020) 127784.

[11] E. Rezaei-Seresht, M. Bakhshi-Noroozi, B. Maleki, Polycycl. Aromat. Compd. (2020) 1-9. doi: 10.1080/10406638.2019.1708417

[12] K. Kavitha, D. Srikrishna, P. K. Dubey, P. Aparna, J. Sulfur Chem. 40 (2019) 195-208.

[13] T. Wang, X. G. Huang, J. Liu, B. Li, J. J. Wu, K. X. Chen, W. L. Zhu, X. Y. Xu, B. B. Zeng, Synlett 2010 (2010) 1351-1354.

[14] F. Moeinpour, N. Dorostkar, M. Vafaei, Synth. Commun. 42 (2012) 2367-2374.

[15] F. Moeinpour, F. R. Omidinia, N. Dorostkar-Ahmadi, B. Khoshdeli, Bull. Korean Chem. Soc. 32 (2011) 2091-2092.

[16] R. Bai, P. Liu, J. Yang, C. Liu, Y. Gu, ACS Sustain. Chem. Eng. 3 (2015) 1292-1297.

[17] Y. Ono, J. Catal. 216 (2003) 406-415.

[18] H. Hattori, Appl. Catal. A 222 (2001) 247-259.

[19] Z. Wang, W. Yang, H. Nongyue, Prog. Chem. 21 (2009) 2053-2059.

[20] R. Abu-Reziq, H. Alper, D. Wang, M. L. Post, J. Am. Chem. Soc. 128 (2006) 5279-5282.

[21] S. Shylesh, J. Schweizer, S. Demeshko, V. Schünemann, S. Ernst, W.R. Thiel, Adv. Synth. Catal. 351 (2009) 1789-1795.

[22] R. Abu-Reziq, D. Wang, M. Post, H. Alper, Chem. Mater. 20 (2008) 2544-2550.

[23] S. Shylesh, V. Schuenemann, W.R. Thiel, Angew. Chem. Int. Ed. 49 (2010) 3428-3459.

[24] Y. Xu, H. Zhang, X. Duan, Y. Ding, Mater. Chem. Phys. 114 (2009) 795-801.

[25] H. Zhang, R. Qi, D. G. Evans, X. Duan, J. Solid State Chem. 177 (2004) 772-780.

[26] F. Moeinpour, A. Khojastehnezhad, Chin. Chem. Lett. 26 (2015) 575-579.

[27] C. Liu, P. Lv, Z. Yuan, F. Yan, W. Luo, Renew. Energ. 35 (2010) 1531-1536.

[28] B. Atashkar, A. Rostami, H. Gholami, B. Tahmasbi, Res. Chem. Intermed. 41 (2015) 3675–3681.  

[29] L. Shiri, B. Tahmasbi, Phosphorus Sulfur Silicon Relat. Elem. 192 (2017) 53-57.

[30] Z. Gao, J. Zhou, F. Cui, Y. Zhu, Z. Hua, J. Shi, Dalton Trans. 39 (2010) 11132-11135.

[31] A. Ghorbani-Choghamarani, B. Tahmasbi, N. Noori, S. Faryadi, C. R. Chimie 20 (2017) 132-139.

[32] A. Ghorbani-Choghamarani, B. Tahmasbi, R. H. E. Hudson, A. Heidari, Micropor. Mesopor. Mater. 284 (2019) 366–377.

[33] B. Tahmasbi, A. Ghorbani-Choghamarani, New J. Chem., 43 (2019) 14485-14501.

[34] K. Gewald, E. Schinke, H. Böttcher, Chem. Ber. 99 (1966) 94-100.

[35] M. Sridhar, R. M. Rao, N. H. Baba, R. M. Kumbhare, Tetrahedron Lett. 48 (2007) 3171-3172.

[36] V. M. Tormyshev, D. V. Trukhin, O. Y. Rogozhnikova, T. V. Mikhalina, T. I. Troitskaya, A. Flinn, Synlett 2006 (2006) 2559-2564.

[37] D. M. Barnes, A. R. Haight, T. Hameury, M. A. McLaughlin, J. Mei, J. S. Tedrow, J. D. R. Toma, Tetrahedron 62 (2006) 11311-11319.

[38] R. Tayebee, S. J. Ahmadi, E. Rezaei Seresht, F. Javadi, M.A. Yasemi, M. Hosseinpour, Maleki, B., Ind. Eng. Chem. Res. 51 (2012) 14577-14582.

[39] F. Javadi, R. Tayebee, Micropor. Mesopor. Mat. 231 (2016) 100-109.