Synthesis and Characterization of Fe3O4@APTES@MOF-199 Magnetic Nanocatalyst and Its Application in the Synthesis of Quinoxaline Derivatives

Document Type : Articles

Authors

Department of Chemistry, Payame Noor University, PO BOX 19395-4697 Tehran, Iran

Abstract

In this research, design and synthesis of Fe3O4@APTES@MOF-199magnetic nanocatalyst nanoparticles as a novel, recyclable and heterogeneous catalyst was developed. The magnetic nanocatalyst was analyzed using various spectroscopic methods such as Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), powder X-ray diffraction (XRD), energy dispersive X‐ray (EDX), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM). The particle size of the nanocatalyst is about 15-96 nm. In addition, magnetic nanocatalysts have been successfully applied to the synthesis of quinoxaline derivatives with a range of derivatives. The crude compounds were isolated in 84-97% yields. The recyclability of the catalyst was evaluated up to 5 times, with no loss in catalysis activity.

Graphical Abstract

Synthesis and Characterization of Fe3O4@APTES@MOF-199 Magnetic Nanocatalyst and Its Application in the Synthesis of Quinoxaline Derivatives

Highlights

● Fe3O4@APTES@MOF-199 magnetic nanocatalyst was used as a reusable magnetic nanocatalyst for the synthesis of quinoxalinederivatives.

● The catalyst was easily recovered and reused without any significant loss in catalytic activity.

● The method conforms to several of the guiding principles of green chemistry.

● This method has the ability to tolerate a good range of substitutions.

● This procedure has the shorter reaction times, high yield and agreement with the green chemistry protocols.

Keywords


[1] (a) R. G. Chaudhuri, S. Paria, Chem. Rev. 112, (2012) 2373-2433; (b) S. Sajjadifar, Z. Arzehgar, S. Khoshpoori, J. Inorg. Organomet. Polym. 28, (2018) 837-846; (c) Q.Y. Tamboli, S. M. Pathange, Chem. Methodol. 2, (2018) 73-82; (d) M. Soleiman-Beigi, Z. Arzehgar, Monatsh. Chem. 147, (2016) 1759-1763; (e) S. Sajjadifar, S. Rezayati, Z. Arzehgar, S. Abbaspour, M. Torabi Jafroudi, J. Chin. Chem. Soc. 65, (2018) 960-969.
[2] W. Wu, Q. He, C. Jiang, Nanoscale Res. Lett. 3, (2008) 397–41.
[3] D. Astruc, F. Lu, J. R. Aranzaes, Angew. Chem. Int. Ed. 44, (2005) 7852-7872.
[4] C. Sun, J. S. Lee, M. Zhang, Adv. Drug Deliv. Rev. 60, (2008) 1252-1265.
[5] X. Zheng, S. Luo, L. Zhang, J. P. Cheng, Green Chem. 11, (2009) 455-458.
[6] Y. Jiang, C. Guo, H. Xia, I. Mahmood, C. Liu, H. Liu, J. Mol. Catal. B: Enzym. 58, (2009) 103-109.
[7] A. H. Chughtai, N. Ahmad, H. A. Younus, A. Laypkov, F. Verpoort, Chem. Soc. Rev. 44, (2015) 6804- 6849.
[8] (a) J. Gascon, A. Corma, F. Kapteijn, F. X. Llabre´s, ACS Catal., 4, (2014) 361-378; (b) Z. Arzehgar, V. Azizkhani, S. Sajjadifar, M. H. Fekri, Chemi. Methodol. 3, (2019) 251-260; (c) Z. Arzehgar, S. Sajjadifar, H. Arandiyan, Asian J. Green Chem. 3, (2019) 43-52.
[9] A. Dhakshinamoorthy, M. Alvaro, A. Corma, H. Garcia, Dalton Trans. 40, (2011) 6344-6360.
[10] P. Deria, J. E. Mondloch, O. Karagiaridi, W. Bury, J. T. Hupp, O. K. Farha, Chem. Soc. Rev. 43, (2014) 5896-5912.
[11] A. Dhakshinamoorthy, A. M. Asiric, H. Garcia, Chem. Soc. Rev. 44, (2015) 1922-1947.
[12] (a) B. Panella, K. Hönes, U. Müller, N. Trukhan, M. Schubert, H. Pütter, M. Hirscher, Angew. Chem. Int. Ed. 47, (2008) 2138-2142; (b) S. Sajjadifar, Z. Arzehgar, A. Ghayuri, J. Chin. Chem. Soc., 65, (2018) 205-211.
[13] S. Navalon, A. Dhakshinamoorthy, M. Álvaro, H. Garcia, ChemSusChem, 6, (2013) 562-577.
[14] L. T. Nguyen, C. V. Nguyen, G. H. Dang, K. K. Le, N. T. Phan, J. Mol. Catal. A Chem. 349, (2011) 28-35.
[15] A. Dhakshinamoorthy, M. Alvaro, H. García, ACS Catal. 1, (2010) 48-53.
[16] Z. Arzehgar, H. Ahmadi, J. Chin. Chem. Soc. 66, (2019) 303-306.
[17] F. X. L. i Xamena, A. Abad, A. Corma, H. Garcia, J. Catal. 250, (2007) 294-298.
[18] S. Gao, N. Zhao, M. Shu, S. Che, Appl. Catal. A Gen. 388, (2010) 196-201.
[19] Y. Zhou, J. Song, S. Liang, S. Hu, H. Liu, T. Jiang, B. Han, J. Mol. Catal. A Chem. 308, (2009) 68-72.
[20] S. Neogi, M. K. Sharma, P. K. Bharadwaj, J. Mol. Catal. A Chem. 299, (2009) 1-4.
[21] K. K. Tanabe, S. M. Cohen, Inorg. Chem. 49, (2010) 6766-6774.
[22] J. L. Rowsell, O. M. Yaghi, Micropor. Mesopor. Mat. 73, (2004) 3-14.
[23] G. Zhao, N. Qin, A.Pan, X. Wu, C. Peng, F. Ke, M. Iqbal, K. Ramachandraiah, J. Zhu, J. Nanomater. 2019, (2019) 1-11.
[24] X. Zhao, S. Liu, Z. Tang, H. Niu, Y.Cai, W. Meng, F. Wu, J. P. Giesy, Sci. Rep. 5,  (2015)  11849-11858.
[25] M. E. Mahmoud, M. F. Amira, S. M. Seleim, A. K. Mohamed, J. Hazard. Mater. 381, (2020) 120979-120989.
[26] R. Ricco, L. Malfatti, M. Takahashi, A. J. Hill, P. Falcaro, J. Mater. Chem. A 1, (2013) 13033–13045.
[27] P. Ghosh, A. Mandal, Adv. Appl. Sci. Res. 2, (2011) 255-260.
[28] M. González, H. Cerecetto, Expert Opin. Ther. Pat. 22, (2012) 1289-1302.
[29] S. Sadegh-Malvajerd, Z. Arzehgar, F. Nikpour, Z. Naturforsch. B 68, (2013) 182-186.
[30] S. B. Patel, B. D. Patel, C. Pannecouque, H. G. Bhatt, Eur. J. Med. Chem. 117, (2016) 230-240.
[31] S. Dailey, J. W. Feast, R. J. Peace, I. C. Sage, S. Till, E. L. Wood, J. Mater. Chem. 11, (2001) 2238-2243.
[32] D. M. Ruiz, J. C. Autino, N. Quaranta, P. G. Vazquez, G. P. Romanelli, Sci.World J. 2012, (2011) 1-8.
[33] W. X. Guo, H. L. Jin, K. X. Chen, F. Chen, J. C. Ding, H. Y. Wu, J. Braz. Chem. Soc., 20, (2009) 1674-1679.
[34] M. M. Heravi, S. Taheri, K. Bakhtiari, H. A. Oskooie, Catal. Commun. 8, (2007) 211-214.
[35] (a) A. Samimi, S. Zarinabadi, A. H. S. Kootenaei, A. Azimi, M. Mirzaei,  J. Med. Chem. Sci. 3, (2020) 79-94; (b) Z. Moghadasi, J. Med. Chem. Sci. 2, (2019) 35-37.
[36] S. Ajaikumar, A. Pandurangan, Appl. Catal. A: Gen. 357, (2009) 184-192.
[37] S. Rezayati, M. Mehmannavaz, E. Salehi, S. Haghi, R. Hajinasiri, S. Afshari Sharif Abad, J. Sci. I. R. Iran 27, (2016) 51-63.
[38] S. Sajjadifar, I. Amini, T. Amoozadeh, Chem. Methodol. 1, (2017) 1-10.
[39] S. Sajjadifar, M. A. Zolfigol, G. Chehardoli, S. Miri, P. Moosavi, Int. J. Chemtech Res. 5, (2013) 422-429.
[40] J. S. Yadav, B. V. S. Reddy, K. Premalatha, K. S. Shankar, Synthesis, 23, (2008) 3787-3792.
[41] H. R. Darabi, F. Tahoori, K. Aghapoor, F. Taala, F. J. Mohsenzadeh, Braz. Chem. Soc., 19, (2008) 1646-1652.
[42] M. M. Heravi, M. H. Tehrani, K. Bakhtiari, H. A. Oskooie, Catal. Commun. 8, (2007) 1341-1344.
[43] S. Sajjadifar, Z. Gheisarzadeh, Appl. Organomet. Chem. 2019, 33, e4602.
[44] (a) H. Sun, H. Zhang, H. Mao, B. Yu, J. Han, G. Bhat, Environ. Chem. Lett. 17, (2019) 1091-1096; (b) S. Chatterjee, N. Guha, S. Krishnan, A. K. Singh, P. Mathur, D. K. Rai, Sci. Reports, 10, (2020) 1-11; (c) D. J. Tranchemontagne, J. R. Hunt, O. M. Yaghi, Tetrahedron 64, (2008) 8553-8557.
[45] A. Ghorbani‐Choghamarani, B. Tahmasbi, N. Noori, R. Ghafouri nejad, J. Iran. Chem. Soc. 14, (2017) 681-693.
[46] S. Bhargava, P. Soni, D. Rathore, J. Mol. Struc. 1198, (2019) 126758.
[47] A. Hasaninejad, A. Zare, M. R. Mohammadizadeh and Z. Karami.  J. Iran. Chem. Soc., 6, (2009) 153-158.
[48] A. Hasaninejad, A. Zare, M. R. Mohammadizadeh, M. Shekouhy, Arkivoc 13, (2008) 28-35.
[49] M. M. Heravi, K. Bakhtiari, M. H. Tehrani, N. M. Javadi, H. A. Oskooie. Arkivoc 16, (2006) 16-22.