Optical, Morphological and Microstructural Investigation of TiO2 nanoparticles for Photocatalytic application

Document Type : Articles


1 Department of Theoretical Physics, University of Madras, Chennai-600 025, India

2 Electrochemical Material Science Division, CSIR- Central Electrochemical Research Institute, Karaikudi, India


Enriched characteristics like porosity, stability and specific surface area assist TiO2 to find extensive applications in photocatalysis, dye sensitized solar cell, and sensors. TiO2 semiconductor was prepared using titanyl acetylacetonate and characterized by XRD, FTIR, Raman, UV-Vis, FESEM, EDX, and DLS. XRD result confirmed the tetragonal structured anatase TiO2 semiconductor. Scherrer formula is used to calculate crystallite size and the obtained value is 6.81 nm. Microstrain, stress, energy density, and crystallite size are calculated using W-H model. The absorption peak of TiO2 is observed at 652.11 cm-1 from FTIR spectrum and authenticated the anatase TiO2 semiconductor. The UV absorption edge is identified at 365 nm and the bandgap is calculated from the Kubelka-Munk equation using Tauc plot. Raman spectrum show bands at 140,197, 395, 512, and 635 cm-1 and these peaks confirmed the presence of the anatase TiO2 stretching mode. FESEM micrographs exhibited agglomerated spherical morphology and the particle size was further analysed using DLS study. The elemental compositions were identified in the EDX analysis. The obtained spectrum showed 55.88 Wt% of O and 44.12 Wt% of Ti atoms. The prepared anatase TiO2 semiconductor indicated enhanced catalytic behaviour. The rate constants and half life time are related to crystallite size using mathematical relation. It is found that the degradation process varies with crystallite size. 

Graphical Abstract

Optical, Morphological and Microstructural Investigation of TiO2 nanoparticles for Photocatalytic application


  • Anatase TiO2 nanostructure is synthesized by the Sol-Gel method.
  • The structural and optical properties were analyzed using various characterization techniques, such as XRD, FE-SEM, UV-Vis, Raman, FTIR, and DLS
  • Crystallite size, Strain, Stress, and Energy density and their interrelations are analyzed by the W-H model
  • Photocatalytic behavior of prepared TiO2 are studied with methylene blue as a model dye
  • The photocatalytic activity is correlated with crystallite size, strain, specific surface area, and porosity
  • The mathematical relation was used to correlate rate constants and Half lifetime


[1] S. Senobari and A. Nezamzadeh-Ejhieh, J. Mol. Liq. 257 (2018) 173–183.
[2] H. Zabihi-Mobarakeh and A. Nezamzadeh-Ejhieh, J. Ind. Eng. Chem. 26 (2015) 315–321.
[3] N. Arabpour and A. Nezamzadeh-Ejhieh, Mater. Sci. Semicond. Process. 31 (2015) 684–692.
[4] A. Nezamzadeh-Ejhieh and H. Zabihi-Mobarakeh, J. Ind. Eng. Chem.20 (2014) 1421–1431.
[5] K. Nakata and A. Fujishima, J. Photochem. Photobiol. C Photochem. Rev. 13 (2012) 169–189.
[6] J. Yu and M. Jaroniec, Appl. Surf. Sci. 319 (2014) 1.
[7] M. El-Kemary, N. Nagy and I. El-Mehasseb, Mater. Sci. Semicond. Process.16 (2013) 1747–1752.
[8] A. C. Gandhi, H. Y. Cheng, Y. M. Chang and J. G. Lin, Mater. Res. Express. 3 (2016) 035017.
[9] W. L. Kwong, H. Qiu, A. Nakaruk, P. Koshy and C. C. Sorrell, Energy Procedia. 34 (2013) 617–626.
[10] H. Zhang, G. Chen and D. W. Bahnemann, J. Mater. Chem. 19 (2009) 5089–5121.
[11] E. Thamarai Selvi and S. Meenakshi Sundar, Mater. Res. Express. 4 (2017) 075903.
[12] Q. Lu, Z. Lu, Y. Lu, L. Lv, Y. Ning, H. Yu, Y. Hou and Y. Yin, Nano Lett.13 (2013) 5698−5702.
[13] M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemannt, Chem. Rev. 95 (1995) 69-96.
[14] X. Lü, B. Xia, C. Liu, Y. Yang and H. Tang, J. Nanomater. 2016 (2016) 1-3.
[15] R. S. Dariani, A. Esmaeili, A. Mortezaali and S. Dehghanpour, Optik (Stuttg). 127 (2016) 7143–7154.
[16] W. Chen, Q. Kuang, Q. Wang and Z. Xie, RSC Adv. 5 (2015) 20396 –20409.
[17] Y. Bai, I. Mora-Seró, F. De Angelis, J. Bisquert and P. Wang, Chem. Rev., 114 (2014) 10095-10130.
[18] I. Sopyan and N. Hafizah, Int. J. Photoenergy. 2009 (2009) 1-8.
[19] J. Bai and B. Zhou, Chem. Rev. 114 (2014) 10131–10176.
[20] J. Fan, Z. Li, W. Zhou, Y. Miao, Y. Zhang, J. Hu and G. Shao, Appl. Surf. Sci. 319 (2014) 75–82.
[21] S. M. Gupta and M. Tripathi, Chinese Sci. Bull. 56 (2011) 1639–1657.
[22] G. Strnad, C. Petrovan, O. Russu and L. Jakab-Farkas, IOP Conf. Ser. Mater. Sci. Eng. 161 (2016) 012051.
[23] A. Nezamzadeh-Ejhieh and M. Khorsandi, J. Hazard. Mater. 176 (2010) 629–637.
[24] Y. S. Chang, M. Choi, M. Baek, P. Y. Hsieh, K. Yong and Y. J. Hsu, Appl. Catal. B Environ. 225 (2018) 379–385.
[25] Y. H. Chiu, T. H. Lai, M. Y. Kuo, P. Y. Hsieh and Y. J. Hsu, APL Mater. 7 (2019) 080901.
[26] P. Y. Hsieh, J. Y. Wu, T. F. M. Chang, C. Y. Chen, M. Sone and Y. J. Hsu, Arab. J. Chem. 13 (2020) 8372-8387.
[27] T. P. Nguyen, D. L. T. Nguyen, V. H. Nguyen, T. H. Le, D. V. N. Vo, Q. T. Trinh, S. R. Bae, S. Y. Chae, S. Y. Kim and Q. Van Le, Nanomaterials. 10 (2020) 1–24.
[28] Y. H. Chiu and Y. J. Hsu, Nano Energy. 31 (2017) 286–295.
[29] Y. Wang, T. Wu, Y. Zhou, C. Meng, W. Zhu and L. Liu. Sensors, 17 (9) (2017) 1971.
[30] A. Sharma, R. K. Karn and S. K. Pandiyan. J. Basic Appl. Eng. Res. 1 (2014) 1–5.
[31] Y. Lan, Y. Lu and Z. Ren, Nano Energy. 2 (2013) 1031–1045.
[32] G. Mattioli, A. Amore Bonapasta, D. Bovi and P. Giannozzi, J. Phys. Chem. C. 118 (2014) 29928–29942.
[33] M. M. Momeni, Bull. Mater. Sci. 39 (2016) 1389–1395.
[34] S. Gupta and M. Tripathi, Open Chem. 10(2) (2012) 279-294.
[35] R. Liu, H. S. Wu, R. Yeh, C. Y. Lee and Y. Hung, Int. J. Photoenergy. 2012 (2012) 1–7.
[36] Sirajudheen P, gireesh V, Sanoop K B, Int. J. Adv. Mater Sci Eng. 4 (2015) 33-39.
[37] H.-Y. Lee and G. M. Kale, Int. J. Appl. Ceram. Technol. 5 (2008) 657–665.
[38] S. Gayathri, P. Jayabal and V. Ramakrishnan, AIP Conf. Proc. 1665 (2015) 120025.
[39] G. L. Li and G. H. Wang, Nanostructured Mater. 11 (1999) 663–668.
[40] Y. T. Prabhu, K. V. Rao, V. S. S. Kumar and B. S. Kumari, World J. Nano Sci. Eng. 04 (2014) 21–28.
[41] R. A. Caruso and M. Antonietti, Chem. Mater. 13 (2001) 3272–3282.
[42] M. F. Goes, M. A. Sinhoreti, S. Consani and M. A. Silva, Braz. Dent. J. 9 (1998) 3–10.
[43] G. Solero, Nanosci. Nanotechnol. 7 (2017) 21–25.
[44] M. Niederberger, Acc. Chem. Res. 40 (2007) 793–800.
[45] M. Gratzel, J. Sol-Gel Sci. Technol. 22 (2001) 7–13.
[46] E. Asikuzun and O. Ozturk, J. Mater. Sci. Mater. Electron. 29 (2018) 7971–7978.
[47] H. M. Chenari, C. Seibel, D. Hauschild, F. Reinert and H. Abdollahian, Mater. Res 19 (2016) 1319–1323.
[48] B. Manikandan, T. Endo, S. Kaneko, K. R. Murali and R. John, J. Mater. Sci. Mater. Electron. 29 (2018) 9474–9485.
[49] K. A. Aly, N. M. Khalil, Y. Algamal and Q. M. A. Saleem, Mater. Chem. Phys. 193 (2017) 182–188.
[50] M. M. El-Nahass, M. H. Ali and A. El-Denglawey, Trans. Nonferrous Met. Soc. China. 22 (2012) 3003–3011.
[51] A. Khorsand Zak, W. H. Abd. Majid, M. E. Abrishami and R. Yousefi, Solid State Sci. 13 (2011) 251–256.
[52] M. R. Mohammadi, M. C. Cordero-Cabrera, M. Ghorbani and D. J. Fray, J. Sol-Gel Sci. Technol. 40 (2006) 15–23.
[53] R. Sivakami, S. Dhanuskodi and R. Karvembu, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 152 (2016) 43–50.
[54] S. Bagheri, K. Shameli, S. Bee and A. Hamid, J. Chem. 2013 (2013) 1-5
[55] P. Bindu and S. Thomas, J. Theor. Appl. Phys. 8 (2014) 123–134.
[56] N. Omrani and A. Nezamzadeh-Ejhieh, Sep. Purif. Technol. 235 (2020) 116228.
[57] S. Venkatachalam, H. Hayashi, T. Ebina and H. Nanjo, Optoelectron. - Adv. Mater. Devices. (2013) 115-136.
[58] A. Taherniya and D. Raoufi, Semicond. Sci. Technol. 31 (2016) 125012.
[59] R. J. Alvaro, N. D. Diana and A. M. María. Contemp. Eng. Sci. 10 (2017) 1539–1549.
[60] P. Chantes, C. Jarusutthirak and S. Danwittayakul. Int. Conf. on Biological, Environ. Food Eng. (2015) 15-16.
[61] M. Vahtrus, A. Šutka, S. Vlassov, A. Šutka, B. Polyakov, R. Saar, L. Dorogin and R. Lõhmus, Mater. Charact. 100 (2015) 98–103.
[62] S. Dianat, Iran. J. Catal. 8 (2018) 121–132.
[63] T. A. Egerton and I. R. Tooley, Int. J. Cosmet. Sci. 36 (2014) 195–206.
[64] S. K. Gupta, R. Desai, P. K. Jha, S. Sahoo and D. Kirin, J. Raman Spectrosc. 41 (2009) 350–355.
[65] T. Ohsaka, F. Izumi and Y. Fujiki, J. Raman Spectrosc. 7 (2018) 321–324.
[66] M. A. Ahmed, E. E. El-Katori and Z. H. Gharni, J. Alloys Compd. 553 (2013) 19–29.
[67] J. Zhang, P. Zhou, J. Liu and J. Yu, Phys. Chem. Chem. Phys. 16 (2014) 20382–20386.
[68] R. Zuo, G. Du, W. Zhang, L. Liu, Y. Liu, L. Mei and Z. Li, Adv. Mater. Sci. Eng. 2014 (2014) 170148.
[69] A. Giwa, P. O. Nkeonye, K. A. Bello and K. A. Kolawole, J. Environ. Prot. (Irvine,. Calif). 03 (2012) 1063–1069.
[70] N. Xu, Z. Shi, Y. Fan, J. Dong, J. Shi and M. Z.-C. Hu, Ind. Eng. Chem. Res. 38 (1999) 373–379.
[71] D. M. de los Santos, J. Navas, T. Aguilar, A. Sánchez-Coronilla, C. Fernández-Lorenzo, R. Alcántara, J. C. Piñero, G. Blanco and J. Martín-Calleja, Beilstein J. Nanotechnol. 6 (2015) 605–616.
[72] N. Omrani, A. Nezamzadeh-Ejhieh and M. Alizadeh, Desalin. Water Treat. 162 (2019) 290–302.
[73] A. Nezamzadeh-Ejhieh and S. Hushmandrad, Appl. Catal. A Gen. 388 (2010) 149–159.
[74] A. Kumar and G. Pandey, JOJ Material Sci. 2(5) (2017) 555596.
[75] C. Yang, M. Zhang, W. Dong, G. Cui, Z. Ren and W. Wang, PLoS One. 12 (2017) e0174104.
[76] M. Z. Bin Mukhlish, F. Najnin, M. M. Rahman and M. J. Uddin, J. Sci. Res. J. Sci. Res. 5(2) (2013) 301-314.
[77] R. S. Dassanayake, E. Rajakaruna and N. Abidi, J. Appl. Polym. Sci. 45908 (2018) 1-10.