A Nickel Sublayer: An Improvement in the Electrochemical Performance of Platinum-Based Electrocatalysts as Anodes in Glucose Alkaline Fuel Cells

Document Type : Articles


1 Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, Utah 84602, USA

2 Fuel Cell Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, Iran


Platinum–nickel electrocatalysts supported on the modified carbon paper (MCP) were prepared by electrodeposition. Here, various procedures were applied for the electrodeposition of nickel and platinum particles, separately or simultaneously, on the surface of the MCP as an anode electrode for glucose alkaline fuel cells. The establishment of the best procedure for this fabrication is the main goal of this work. The obtained electrocatalysts were characterized by cyclic voltammetry, linear sweep voltammetry, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The results showed that the Pt/Ni electrocatalyst, electrodeposited from two separate solutions containing Ni and then Pt ions, has excellent electrocatalytic activity for the glucose oxidation reaction (GOR). On the other hand, the Pt/Ni/MCP electrode showed satisfactory repeatability when subjected to continuous cycling and less concentration polarization in the oxidation region of GOR (from -1 to 0.6 V vs. SCE). Also, the Pt/Ni/MCP electrode showed a significant increase in the exchange current density (0.95 mA cm-2) that accelerates the kinetics of the glucose oxidation reaction.These results indicate that modification of the catalyst layer structure in the present work is the most promising approach to achieve low-cost and efficient catalysts for use in glucose alkaline fuel cells.

Graphical Abstract

A Nickel Sublayer: An Improvement in the Electrochemical Performance of Platinum-Based Electrocatalysts as Anodes in Glucose Alkaline Fuel Cells



  • Evaluation of the effects of Ni and Pt electrodeposition on glucose oxidation reaction (GOR) efficiency
  • Study of the layer-by-layer or simultaneous Ni and Pt electro-deposition on the electro-catalytic activity toward GOR
  •  Identification of the Pt/Ni/MCP electrode as the best electrode for GOR.


[1] D. Basu. S. Basu, A study on direct glucose and fructose alkaline fuel cell. Electrochim. Acta 55 (20) (2010) 5775–5779.
[2] G. Zang, W. Hao, X. Li, S. Huang, J. Gan, Z.Luo, Y. Zhang, Copper nanowires-MOFs-graphene oxide hybrid nanocomposite targeting glucose electro-oxidation in neutral medium. Electrochim. Acta 277 (2018) 176-184.
[3] A. Ehsani, M. Hadi, E. Kowsari, S. Doostikhah, J. Torabian, Electrocatalytic oxidation of  ethanol on the surface of the POAP/ phosphoric acid-doped ionic liquid-functionalized graphene oxide nanocomposite film. Iranian J. Catal. 7(3) (2017) 187-192.
[4] M. H. Nobahari, A. Nozad Golikand, M. Bagherzadeh, Synthesis and characterization of Pt3Co bimetallic nanoparticles supported on MWCNT as an electrocatalyst for methanol oxidation, Iranian J. Catal. 7(4) (2017) 327-335.
[5] S. Sohrabi, M. Ghalkhani, Metal–organic frameworks as electro-catalysts for oxygen reduction reaction in electrochemical technologies, J. Electronic Mater. 48 (2019) 4127-4137.
[6] J. O. Bockris, B. J. Piersma; Gileadi, E. Anodic oxidation of cellulose and lower carbohydrates. Electrochim. Acta 9 (10) (1964) 1329-1332.
[7] J. Chen, C. X. Zhao, M. M. Zhi, K. Wang, L. Deng, G. Xu, Alkaline direct oxidation glucose fuel cell system using silver/nickel foams as electrodes. Electrochim. Acta, 66 (2012) 133-138.
[8] I. V. Delidovich, B. L. Moroz, O. P.Taran, N. V. Gromov, P. A. Pyrjaev, I. P. Prosvirin, V. I. Bukhtiyarov, V. N. Parmon, Aerobic selective oxidation of glucose to gluconate catalyzed by Au/Al2O3 and Au/C: impact of the mass-transfer processes on the overall kinetics. Chem. Eng. J. 223 (2013) 921-931.
[9] El-Refaei, S. M.; Saleh, M. M.; Awad, M. I. Enhanced glucose electrooxidation at a binary catalyst of manganese and nickel oxides modified glassy carbon electrode. J. Power Sources 223 (2013) 125-128.
[10] A. Habrioux, K. Servat, T. Girardeau, P. Guérin, T. W. Napporn, K. B. Kokoh, Activity of sputtered gold particles layers towards glucose electrochemical oxidation in alkaline medium. Curr. Appl. Phys. 11 (5) (2011) 1149-1152.
[11] N. Arjona, M. Guerra-Balcazar, G. Trejo, J. Ledesma-Garcia, L. G. Arriaga, Electrochemical growth of au architectures on glassy carbon and their evaluation toward glucose oxidation reaction. New J. Chem., 36 (12) (2012) 2555-2561.
[12] D. Basu, S. Basu, Synthesis and characterization of Pt–Au/C catalyst for glucose electro-oxidation for the application in direct glucose fuel cell. Int. J. Hydrogen Energy, 36 (22) (2011) 14923-14929.
[13] D. Basu, S. Sood, S. Basu, Performance comparison of Pt–Au/C and Pt–Bi/C anode catalysts in batch and continuous direct glucose alkaline fuel cell. Chem. Eng. J. 228 (2013) 867-870.
[14] C. Jin, Z. Chen, Electrocatalytic oxidation of glucose on gold–platinum nanocomposite electrodes and platinum-modified gold electrodes. Synth. Met. 157 (13-15) (2007) 592-596.
[15] S. Kerzenmacher, U. Kräling, M. Schroeder , R. Brämer, R. Zengerle, F. von Stetten, Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 2: glucose-tolerant oxygen reduction cathodes. J. Power Sources, 195 (19) (2016) 6524-6531.
[16] A. Kloke, C. Kohler, R. Gerwig, R. Zengerle, S. Kerzenmacher, Cyclic electrodeposition of ptcu alloy: facile fabrication of highly porous platinum electrodes. Adv. Mater. 24 (21) 2012) 2916-2921.
[17] X. Yan, X. Ge, S. Cui, Pt-decorated nanoporous gold for glucose electrooxidation in neutral and alkaline solutions. Nanoscale Res. Lett. 6 (1) (2011) 1-6.
[18] H. Zhang, N. Toshima, Glucose oxidation using au-containing bimetallic and trimetallic nanoparticles. Catal. Sci. Technol. 3 (2) (2013) 268-278.
[19] R. A. Mirzaie, B. Moeini, Study of type of electrolyte effect on platinum electro-catalyst performance prepared by cyclic voltammetry electrodeposition method for glucose oxidation reaction. MATTER Int. J. Sci. Technol. 1 (2015) 91-102.
[20] I. Taurino, G. Sanzó, F. Mazzei, G. Favero, G. De Micheli, S. Carrara, Fast synthesis of platinum nanopetals and nanospheres for highly-sensitive non-enzymatic detection of glucose and selective sensing of ions. Sci. Rep. 5 (1) (2015) 15277.
[21] D. W. Hwang, S. Lee, M. Seo, T. D. Chung, Recent advances in electrochemical non-enzymatic glucose sensors – A Review. Anal. Chim. Acta, 1033 (2018) 1-34.
[22] T. Unmüssig, A. Weltin, S. Urban, P. Daubinger, G. A.Urban, J. Kieninger, Non-Enzymatic Glucose Sensing Based on Hierarchical Platinum Micro-/Nanostructures. J. Electroanal. Chem. 816 (2018) 215-222.
[23] M. Frei, J. Martin, S. Kindler, G. Cristiano, R. Zengerle, S. Kerzenmacher, Power supply for electronic contact lenses: abiotic glucose fuel cells vs. Mg/Air batteries. J. Power Sources, 401 (2018) 403-414.
[24] X. Tian, S. Lian, L. Zhao, X. Chen, Z. Huang, X. Chen, A novel electrochemiluminescence glucose biosensor based on platinum nanoflowers/graphene oxide/glucose oxidase modified glassy carbon electrode. J. Solid State Electrochem. 18 (9), (2014) 2375-2382.
[25] M. Frei, C. Köhler, L. Dietel, J. Martin, F. Wiedenmann, R. Zengerle, S. Kerzenmacher, Pulsed electrodeposition of highly porous pt alloys for use in methanol, formic acid, and glucose fuel cells. ChemElectroChem, 5 (7) (2018) 1013-1023.
[26] K. Abdul Razak, S. H. Neoh, N. S. Ridhuan, N. Mohamad Nor, Effect of platinum-nanodendrite modification on the glucose-sensing properties of a zinc-oxide-nanorod electrode. Appl. Surf. Sci., 380(2016) 32-39.
[27] N. Neha, B. S. R. Kouamé, T. Rafaïdeen, S. Baranton, C. Coutanceau, Remarkably efficient carbon-supported nanostructured platinum-bismuth catalysts for the selective electrooxidation of glucose and methyl-glucoside. Electrocatalysis 12 (2021) 1-14.
[28] K. A. Soliman, L. A. Kibler, D. M. Kolb, Electrocatalytic behaviour of epitaxial Ag(111) overlayers electrodeposited onto noble metals: electrooxidation of d-glucose. Electrocatalysis, 3 (3) (2012) 170-175.
[29] Q. Sheng, H. Mei, H. Wu, X. Zhang, S. Wang, PtxNi/C nanostructured composites fabricated by chemical reduction and their application in non-enzymatic glucose sensors. Sensors Actuators B Chem., 203 (2014) 588-595.
[30] C. Chen, R. Ran, Z. Yang, R. Lv, W. Shen, F. Kang, Z.H. Huang, An efficient flexible electrochemical glucose sensor based on carbon nanotubes/carbonized silk fabrics decorated with pt microspheres. Sensors Actuators B Chem., 256 (2018) 63-70.
[31] H. Shi, S. Zhou, X. Feng, H. Huang, Y. Guo, W. Song, Titanate nanotube forest/CuxO nanocube hybrid for glucose electro-oxidation and determination. Sens. Actuators B: Chem. 190 (2014) 389-397.
[32] L. Parashuram, S. Sreenivasa, S. Akshatha, V. Udayakumar, Sandeep Kumar, S. A non-enzymatic electrochemical sensor based on ZrO2: Cu (I) nanosphere modified carbon paste electrode for electro-catalytic oxidative detection of glucose in raw Citrus aurantium var. sinensis. Food Chem. 300 (2019) 125178.
[33] Y. Gu, H. Yang, B. Li, J. Mao, Y. An, A ternary nanooxide NiO-TiO2-ZrO2/SO42- as efficient solid superacid catalysts for electro-oxidation of glucose. Electrochim. Acta 194 (2016) 367-376.
[34] F. Alidusty, A. Nezamzadeh-Ejhieh. Considerable decrease in overvoltage of electrocatalytic oxidation of methanol by modification of carbon paste electrode with Cobalt (II)-clinoptilolite nanoparticles. Inter. J. Hydrogen Energy 41 (2016) 8881-8892.
[35] A. Ahmadi, A. Nezamzadeh-Ejhieh, A comprehensive study on electrocatalytic current of urea oxidation by modified carbon paste electrode with Ni (II)-clinoptilolite nanoparticles: Experimental design by response surface methodology. J. Electroanal. Chem. 801 (2017) 328-337.
[36] M. S. Tohidi, A. Nezamzadeh-Ejhieh. A simple, cheap and effective methanol electrocatalyst based of Mn (II)-exchanged clinoptilolite nanoparticles. Inter. J. Hydrogen Energy 41 (2016) 6288-6299.
[37] R. A. Mirzaie, F. Hamedi, Introducing Pt/ZnO as a new non carbon substrate electro catalyst for oxygen reduction reaction at low temperature acidic fuel cells. Iranian J. Catal. 5(3) (2015) 275-283.
[38] G. A. B. Melloa, W. Cheuquepán, V. Briega-Martos, M. J. Feliu, Glucose electro-oxidation on Pt (100) in phosphate buffer solution (pH 7): A mechanistic study. Electrochim. Acta, 354 (2020) 136765.
[39] M. Fleischmann, K. Korinek, D. Pletcher, The kinetics and mechanism of the oxidation of amines and alcohols at oxide-covered nickel, silver, copper, and cobalt electrodes. J.Chem. Soc. Perkin Trans.2, (10) (1972) 1396-1403.
[40] G. Yang, E. Liu, N. W. Khun, S. P. Jiang, Direct electrochemical response of glucose at nickel-doped diamond like carbon thin film electrodes. J. Electroanal. Chem. 627 (1–2) (2009) 51-57.
[41] M. A. Al-Omair, A. H. Touny, F. A. Al-Odail, M. M. Saleh, Electrocatalytic oxidation of glucose at nickel phosphate nano/micro particles modified electrode. Electrocatalysis 8 (4) (2017) 340-350.
[42] H. Gharibi, R. A. Mirzaie, E. Shams, M. Zhiani, M. Khairmand, preparation of platinum electrocatalysts using carbon supports for oxygen reduction at a gas-diffusion electrode. J. Power Sources, 139 (1-2) (2005) 61-66.
[43] M. Pasta, L. Hu, F. La Mantia, Y. Cui, Electrodeposited gold nanoparticles on carbon nanotube-textile: anode material for glucose alkaline fuel cells. Electrochem. commun. 19 (2012) 81-84.
[44] S. Prilutsky, P. Schechner, E. Bubis, V. Makarov, E. Zussman, Y. Cohen, anodes for glucose fuel cells based on carbonized nanofibers with embedded carbon nanotubes. Electrochim. Acta, 55 (11), (2010) 3694-3702.
[45] M. Shamsipur, M. Najafi, M. R. M. Hosseini, Highly improved electrooxidation of glucose at a nickel (ii) oxide/multi-walled carbon nanotube modified glassy carbon electrode. Bioelectrochemistry, 77 (2) (2010) 120-124.
[46] H. Zhang, F. Jiang, R. Zhou, Y. Du, P.Yang, C. Wang, J. Xu, Effect of deposition potential on the structure and electrocatalytic behavior of Pt micro/nanoparticles. Int. J. Hydrogen Energy, 36 (23) (2011) 15052-15059.
[47] D. A. Shirley, High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold. Phys. Rev. B 5 (12) (1972) 4709-4714.
[48] V. Jain, M. C. Biesinger, M. R. Linford, The gaussian-lorentzian sum, product, and convolution (Voigt) functions in the context of peak fitting X-Ray photoelectron spectroscopy (XPS) narrow scans. Appl. Surf. Sci. 447 (2018) 548-553.
[49] E. Willinger, A. Tarasov, R. Blume, A. Rinaldi, O. Timpe, C. Massué, M. Scherzer, J. Noack, R. Schlögl, M. G. Willinger, Characterization of the platinum–carbon interface for electrochemical applications. ACS Catal. 7(7) (2017) 4395-4407.
[50] G. Moggia, T. Kenis, N. Daems, T. Breugelmans, Electrochemical oxidation of d-glucose in alkaline medium: impact of oxidation potential and chemical side reactions on the selectivity to d-gluconic and d-glucaric acid. ChemElectroChem, 7 (1) (2020)86-95.
[51] M. H. Sheikh-Mohseni, A. Nezamzadeh-Ejhieh, Modification of carbon paste electrode with ni-clinoptilolite nanoparticles for electrocatalytic oxidation of methanol. Electrochim. Acta, 147 (2014) 572-581.
[52] T. Tamiji, A. Nezamzadeh-Ejhieh, Electrocatalytic determination of Hg (II) by the modified carbon paste electrode with Sn (IV)-clinoptilolite nanoparticles. Electrocatalysis 10 (5) (2019)466-476.
[53] T. Tamiji, A. Nezamzadeh-EjhiehA comprehensive kinetic study on the electrocatalytic oxidation of propanols in aqueous solution, Solid State Sci. 98 (2019) 106033.
[54] L. J. Z. Wang, X. He, J. Gao, J. Li, C. Wan, Ch. Jing. Electrochemical impedance ipectroscopy (EIS) Study of LiNi1/3Co1/3Mn1/3O2 for Li-Ion Batteries. Int. J. Electrochem. Sci. 7 (1) (2012) 345-353.