Non-noble supported catalyst for oxidation of glucose under mild reaction conditions

Document Type : Articles

Authors

1 Department of Industrial Chemistry, Faculty of Industrial Sciences and Technology, University Malaysia Pahang, Lebuhraya Tun Razak, Gambang, 26300, Pahang, Malaysia

2 Earth Resources & Sustainability Centre, University Malaysia Pahang, Lebuhraya Tun Razak, Gambang, 26300, Pahang, Malaysia

3 Central Laboratory, University Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang, Malaysia

Abstract

Catalytic oxidation of D-glucose to D-gluconic acid derivative with H2O2 has been studied using non-noble Cobalt supported catalyst. The catalysts were synthesized using the scalable incipient wetness impregnation method of Co/Al2O3 and Co/TS1. The catalysts have been characterized by TGA, XRD, FESEM-EDX, BET, FTIR, and Hammett test. The oxidation of the D-glucose into D-gluconic acid with yield of 82% (as sodium gluconate) and selectivity is about 100 % have been achieved in the presence of 5 wt.% Co/Al2O3 as a catalyst under mild reaction conditions (60 oC, pH 9, 1atm, 3h). Reusability study of Co/Al2O3 was proven to be stable for subsequent cycles of reaction with no notable changes in selectivity. Besides, the physic-chemical properties of spent catalyst were similarly characterized through FTIR and Hammett test analysis. The presence of gluconic acid was confirmed by HPLC. The apparent activation energy of reaction is 15 kJ mol-1 which is lower than the value reported by prior-art using gold catalysts suggesting different mechanism with dissimilar rate-determining step. The activation of H2O2 is mediated by Co crystallites on the catalyst surfaces, forming active oxygen species via hydroxyl and peroxyl radical intermediates and/or oxometal species. The basic sites on catalyst facilitate the activation of glucose. The findings could help to make a cost-effective catalyst for D-glucose conversion into valuable organic acid chemical.

Graphical Abstract

Non-noble supported catalyst for oxidation of glucose under mild reaction conditions

Highlights

  • Non-precious metal as a catalyst for selective oxidation of glucose
  • Catalyst is reusable with a simple regeneration step
  • Low apparent activation energy
  • The simple and scalable catalyst preparation technique

Keywords


[1] X. Zhang, K. Wilson, A. F. Lee, Chem Rev. 116 (2016) 12328-12368.
[2] S. Ramachandran, P. Fontanille, A. Pandey, C. Larroche, Food Technol Biotech. 44 (2006) 185-195.
[3] A. Cañete-Rodríguez, I. Santos-Dueñas, J. Jiménez-Hornero, A. Ehrenreich, W. Liebl, I. García-García, Process Biochem. 51 (2016) 1891-1903.
[4] P. Pal, R. Kumar, S. Banerjee, Front Chem Sci Eng. 13 (2019) 152-163.
[5] S. Anastassiadis, I. G. Morgunov, Recent Pat Biotechnol.1 (2007) 167-180.
[6] T. Ishida, K. Kuroda, N. Kinoshita, W. Minagawa, M. Haruta, J. Colloid Interface Sci. 323 (2008) 105-111.
[7] R. Saliger, N. Decker, U. Prüße, Appl. Catal. B. 102 (2011) 584-589.
[8] B. N. Zope, D. D. Hibbitts, M. Neurock, R. J. Davis, Science. 330 (2010) 74-78.
[9] S. E. Davis, B. N. Zope, R. J. Davis, Green Chem. 14 (2012) 143-147.
[10] M. Moo-Young, Comprehensive biotechnology, third ed., Elsevier, 2019.
[11] P. Pal, R. Kumar, S. Banerjee, Chem Eng Process. 104 (2016) 160-171.
[12] I. Dencic, J. Meuldijk, M. de Croon, V. Hessel, J. Flow Chem. 1 (2012) 13-23.
[13] T. Haynes, O. Ersen, V. Dubois, D. Desmecht, K. Nakagawa, S. Hermans, Appl. Catal. B. 241 (2019) 196-204.
[14] A. Mirescu, H. Berndt, A. Martin, U. Prüße, Appl Catal A-Gen. 317 (2007) 204-209.
[15] A. M. Velarde, P. Bartl, T. Nießen, W. Hoelderich, J.  Mol Catal A Chem. 157 (2000) 225-236.
[16] M. Khawaji, Y. Zhang, M. Loh, I. Graça, E. Ware, D. Chadwick, Appl. Catal. B. 256 (2019) 117799-117811.
[17] S. M. Lama, J. Schmidt, A. Malik, R. Walczak, D. V. Silva, A. Völkel, M. Oschatz, ChemCatChem. 10 (2018) 2458-2465.
[18] Y. Zhuge, G. Fan, Y. Lin, L. Yang, F. Li, Dalton Trans. 48 (2019) 9161-9172.
[19] X. Zhang, H. Shi, Q. Chi, X. Liu, L. Chen, Polym Bull. 77 (2020) 1003-1014.
[20] C. Ehrhardt, M. Gjikaj, W. Brockner, Thermochim. Acta. 432 (2005) 36-40.
[21] D. Ghita, D. S. Ezeanu, P. Rosca, D. Cursaru, Rev. Chim. (Bucharest). 65 (2014) 1395-1398.
[22] B. Małecka, A. Łącz, E. Drożdż, A. Małecki, J Therm Anal Calorim. 119 (2015) 1053-1061.
[23] P. Bolt, F. H. Habraken, J. Geus, J. Solid State Chem. 135 (1998) 59-69.
[24] Z. Zsoldos, F. Garin, L. Hilaire, L. Guczi, J Mol Catal A Chem. 111 (1996) 113-122.
[25] L. P. Profeti, E. A. Ticianelli, E. M. Assaf, J. Power Sources. 175 (2008) 482-489.
[26] C. Cheng, S. Foo, A. Adesina, Catal Commun. 12 (2010) 292-298.
[27] R. Padilla, M. Benito, L. Rodríguez, A. Serrano, G. Muñoz, L. Daza, Int J Hydrogen Energ. 35 (2010) 8921-8928.
[28] L. Cumaranatunge,W. N. Delgass, J. Catal. 232 (2005) 38-42.
[29] M. Taramasso, G. Perego, B. Notari, Patent (1983), 4 410 501. 1981.
[30] Y. S. Ko,W. S. Ahn, Korean J Chem Eng. 15 (1998) 182-191.
[31] L. P. Profeti, E. A. Ticianelli, E. M. Assaf, Fuel. 87 (2008) 2076-2081.
[32] S. Albonetti, R. Mazzoni, F. Cavani (Eds.), Homogeneous, Heterogeneous and Nanocatalysis, RSC, 2014, 1-39.
[33] S. Laha, R. Kumar, J. Catal. 208 (2002) 339-344.
[34] L. Ji, J. Lin, H. Zeng, J. Phys. Chem. B. 104 (2000) 1783-1790.
[35] G. Busca, V. Lorenzelli, V. Bolis, Mater. Chem. Phys. 31 (1992) 221-228.
[36] E. S. Spier, I. Hermans. ChemPhysChem. 14 (2013) 3384-3388.
[37] S. J. Arts, E. J. Mombarg, H. van Bekkum, R. A. Sheldon, Synthesis. 1997 (1997) 597-613.
[38] H. Okatsu, N. Kinoshita, T. Akita, T. Ishida, M. Haruta, Appl Catal A-Gen. 369 (2009) 8-14.
[39] A. T. Bell, Science. 299 (2003) 1688-1691.
[40] C. Della Pina, E. Falletta, M. Rossi, Chem. Soc. Rev. 41 (2012) 350-369.
[41] Y. Liu, G. Zhao, D. Wang, Y. Li, Natl Sci Rev. 2 (2015) 150-166.
[42] T. Mallat,A. Baiker, Catal. Today. 19 (1994) 247-283.
[43] O. Špalek, J. Balej, I. Paseka, J. Chem. Soc., Faraday Trans.1. 78 (1982) 2349-2359.