A favourable ultrasound-assisted method for the combinatorial synthesis of 2,3-dihydroquinazolin-4(1H)-ones via CoAl2O4 spinel nanocrystal as an efficient catalyst

Document Type : Articles


Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box 87317-51167, I. R. Iran


Mesoporous CoAl2O4 spinel nanocrystals ( nano-CoAl2O4 ) were synthesized and fully characterized by X- ray diffraction patterns (XRD), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), DLS (dynamic light scattering) and FT-IR. The nanocrystals promoted the preparation of quinazolinones via the one-pot, three component condensation reaction of benzaldehydes, isatoic anhydride, primary aromatic amine or ammonium acetate at 45°C under ultrasound irradiation. Experimental simplicity, great yields in concise times, the retrievability of the nanocrystals and performing the sonochemical methodology as an effective way in synthetic chemistry for the preparation of medicinally privileged heterocyclic molecules are some of the substantial features of this method. The present catalytic process is applicable to an extensive diversity of substrates for the preparation of a variety-oriented library of dihydroquinazolinones. The feasibility of doing one-pot synthesis under ultrasonic irradiation with a heterogeneous nanocrystal could improve the reaction rates and shorten the reaction times.

Graphical Abstract

A favourable ultrasound-assisted method for the combinatorial synthesis of 2,3-dihydroquinazolin-4(1H)-ones via CoAl2O4 spinel nanocrystal as an efficient catalyst



  • Synthesis of dihydroquinazolinones catalyzed by CoAl2O4 spinel nanocrystals
  • A favorable sonochemical method is described for the preparation of,3-dihydroquinazolin-4(1H)-ones
  • Good to excellent yields were achieved within a shorter reaction time.
  • High catalytic activity and reusability of nanocatalyst were observed.


[1] F. Mojtabazade, B. Mirtamizdoust, A. Morsali, P. Talemi, Ultrasonic-assisted synthesis and the structural characterization of novel the zigzag Cd(II) metal-organic polymer and their nanostructures, Ultrason. Sonochem. 42 (2018) 134-140.
[2] S. Sadjadi, Graphene–ZnO@SiO2 hybrid: An efficient and solid acid catalyst for synthesis of azlactones under ultrasound irradiation, Iran. J. Catal, 8(3), (2018) 189-194.
[3] D. Chen, D.-y. Li, Z.-t. Kang, Preparation of magnesium ferrite nanoparticles by ultrasonic wave-assisted aqueous solution ball milling, Ultrason. Sonochem. 20 (2013) 1337-1340.
[4] N.Z. Gheorghiţă, A.M.V. Zbancioc, D. Mantu, A. Miron, C. TĂNASE, I.I. Mangalagiu, Ultrasounds-assisted synthesis of highly functionalized acetophenone derivatives in heterogeneous catalysis, Rev. Roum. Chim, 55 (2010) 983-987.
[5] V. Rajendran, K. Harikumar, Ultrasound assisted synthesis of diethyl-2, 2’-thiodiacetate with 2-bromoethylacetate under a new polymer-supported phase-transfer catalyst in solid-liquid condition, Chem. Sci. J. 6 (2015) 1-9.
[6] C. Leonelli, T.J. Mason, Microwave and ultrasonic processing: now a realistic option for industry, Chem. Eng. Process. 49 (2010) 885-900.
[7] J. Luo, Z. Fang, R.L. Smith, Ultrasound-enhanced conversion of biomass to biofuels, Prog. Energy Combust. Sci.  41 (2014) 56-93.
[8] M. Amereh, M. Haghighi, P. Estifaee, The potential use of HNO3-treated clinoptilolite in the preparation of Pt/CeO2-Clinoptilolite nanostructured catalyst used in toluene abatement from waste gas stream at low temperature, Arabian J. Chem. 11 (2018) 81-90.
[9] H. Shahbazi-Alavi, J. Safaei-Ghomi, R. Talebi, PbWO4 nanoparticles: A robust and reusable heterogeneous catalyst for the synthesis of benzopyranopyridines under ultrasonic irradiation, Iran. J. Catal. 7(2), (2017) 103-109.
[10] J.S. Ghomi, S. Zahedi, Novel ionic liquid supported on Fe3O4 nanoparticles and its application as a catalyst in Mannich reaction under ultrasonic irradiation, Ultrason. Sonochem.  34 (2017) 916-923.
[11] R. Cella, H.A. Stefani, Ultrasound in heterocycles chemistry, Tetrahedron, 65 (2009) 2619-2641.
[12] Z. Xu, Y. Zhang, H. Fu, H. Zhong, K. Hong, W. Zhu, Antifungal quinazolinones from marine-derived Bacillus cereus and their preparation, Bioorg. Med. Chem. Lett. 21 (2011) 4005-4007.
[13] M.-J. Hour, L.-J. Huang, S.-C. Kuo, Y. Xia, K. Bastow, Y. Nakanishi, E. Hamel, K.-H. Lee, 6-Alkylamino-and 2, 3-Dihydro-3 ‘-methoxy-2-phenyl-4-quinazolinones and related compounds: Their synthesis, cytotoxicity, and inhibition of tubulin polymerization, J. Med. Chem. 43 (2000) 4479-4487.
[14] Y. Hu, E. Ehli, J. Hudziak, G. Davies, Berberine and evodiamine influence serotonin transporter (5-HTT) expression via the 5-HTT-linked polymorphic region, Pharmacogenomics J. 12 (2012) 372-378.
[15] O. Cruz-Lopez, A. Conejo-García, M. C Nunez, M. Kimatrai, M. E Garcia-Rubino, F. Morales, V. Gomez-Perez, J. M Campos, Novel substituted quinazolines for potent EGFR tyrosine kinase inhibitors, Curr. Med. Chem. 18 (2011) 943-963.
[16] R. Noel, N. Gupta, V.r. Pons, A.l. Goudet, M.D. Garcia-Castillo, A.l. Michau, J. Martinez, D.-A. Buisson, L. Johannes, D. Gillet, N-methyldihydroquinazolinone derivatives of Retro-2 with enhanced efficacy against Shiga toxin, J. Med. Chem.  56 (2013) 3404-3413.
[17] R. Williams, C.M. Niswender, Q. Luo, U. Le, P.J. Conn, C.W. Lindsley, Positive allosteric modulators of the metabotropic glutamate receptor subtype 4 (mGluR4). Part II: Challenges in hit-to-lead, Bioorg. Med. Chem. Lett. 19 (2009) 962-966.
[18] M. Dabiri, P. Salehi, S. Otokesh, M. Baghbanzadeh, G. Kozehgary, A.A. Mohammadi, Efficient synthesis of mono-and disubstituted 2, 3-dihydroquinazolin-4 (1H)-ones using KAl(SO4)2·12H2O as a reusable catalyst in water and ethanol, Tetrahedron Lett. 46 (2005) 6123-6126.
[19] M. Bakavoli, O. Sabzevari, M. Rahimizadeh, Microwave activated synthesis of 2-aryl-quinazolin-4 (3H) ones, Chin. Chem.Lett. 18 (2007) 1466-1468.
[20] M. Dabiri, P. Salehi, M. Baghbanzadeh, M.A. Zolfigol, M. Agheb, S. Heydari, Silica sulfuric acid: An efficient reusable heterogeneous catalyst for the synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones in water and under solvent-free conditions, Catal. Comm. 9 (2008) 785-788.
[21] Z. Song, L. Liu, Y. Wang, X. Sun, Efficient synthesis of mono-and disubstituted 2, 3-dihydroquinazolin-4 (1H)-ones using aluminum methanesulfonate as a reusable catalyst, Res. Chem. Intermed. 38 (2012) 1091-1099.
[22] I. Yavari, S. Beheshti, ZnO nanoparticles catalyzed efficient one-pot three-component synthesis of 2, 3-disubstituted quinalolin-4 (1H)-ones under solvent-free conditions, J. Iran. Chem. Soc. 8 (2011) 1030-1035.
[23] H.R. Shaterian, A.R. Oveisi, M. Honarmand, Synthesis of 2, 3-dihydroquinazoline-4 (1H)-ones, Synth. Commun. 40 (2010) 1231-1242.
[24] I. Gul, A. Maqsood, M. Naeem, M.N. Ashiq, Optical, magnetic and electrical investigation of cobalt ferrite nanoparticles synthesized by co-precipitation route, J. Alloys Compd. 507 (2010) 201-206.
[25] N. Ballarini, F. Cavani, S. Passeri, L. Pesaresi, A.F. Lee, K. Wilson, Phenol methylation over nanoparticulate CoFe2O4 inverse spinel catalysts: the effect of morphology on catalytic performance, Appl. Catal., A 366 (2009) 184-192.
[26] C. Ragupathi, J.J. Vijaya, P. Surendhar, L.J. Kennedy, Comparative investigation of nickel aluminate (NiAl2O4) nano and microstructures for the structural, optical and catalytic properties, Polyhedron, 72 (2014) 1-7.
[27] S. Farhadi, S. Panahandehjoo, Spinel-type zinc aluminate (ZnAl2O4) nanoparticles prepared by the co-precipitation method: a novel, green and recyclable heterogeneous catalyst for the acetylation of amines, alcohols and phenols under solvent-free conditions, Appl. Catal., A 382 (2010) 293-302.
[28] J. Safaei-Ghomi, M. Navvab, H. Shahbazi-Alavi, One-pot sonochemical synthesis of 1, 3-thiazolidin-4-ones using nano-CdZr4(PO4)6 as a robust heterogeneous catalyst, Ultrason. Sonochem. 31 (2016) 102-106.
[29] J. Safaei-Ghomi, Z. Akbarzadeh, Sonochemically synthesis of arylethynyl linked triarylamines catalyzed by CuI nanoparticles: A rapid and green procedure for Sonogashira coupling, Ultrason. Sonochem. 22 (2015) 365-370.
[30] X. Wang, Y. Wei, J. Wang, W. Guo, C. Wang, The kinetics and mechanism of ultrasonic degradation of p-nitrophenol in aqueous solution with CCl4 enhancement, Ultrason. Sonochem. 19 (2012) 32-37.
[31] A. Javidan, A. Ziarati, J. Safaei-Ghomi, Simultaneous sonication assistance for the synthesis of tetrahydropyridines and its efficient catalyst ZrP2O7 nanoparticles, Ultrason. Sonochem. 21 (2014) 1150-1154.
[32] P. Gunasekaran, S. Perumal, P. Yogeeswari, D. Sriram, A facile four-component sequential protocol in the expedient synthesis of novel 2-aryl-5-methyl-2, 3-dihydro-1H-3-pyrazolones in water and their antitubercular evaluation, Eur. J. Med. Chem. 46 (2011) 4530-4536.
[33] J. Chen, D. Wu, F. He, M. Liu, H. Wu, J. Ding, W. Su, Gallium (III) triflate-catalyzed one-pot selective synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones and quinazolin-4 (3H)-ones, Tetrahedron Lett. 49 (2008) 3814-3818.
[34] S. Santra, M. Rahman, A. Roy, A. Majee, A. Hajra, Nano-indium oxide: An efficient catalyst for one-pot synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones with a greener prospect, Catal. Commun. 49 (2014) 52-57.
[35] M. Wang, T.T. Zhang, Y. Liang, J.J. Gao, Efficient synthesis of mono-and disubstituted 2,3-dihydroquinazolin-4 (1H)-ones using copper benzenesulfonate as a reusable catalyst in aqueous solution, Monatsh. Chem. 143 (2012) 835-839.