Electrochemical amperometric sensing of loratadine using NiO modified paste electrode as an amplified sensor

Document Type : Articles

Authors

Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran

Abstract

A modified carbon paste electrode with NiO nanoparticles showed an excellent electrocatalytic behavior towards loratadine in the voltammetric and chronoamperometric approaches. Typical plots of IC/IL vs. t1/2 were contracted, and an average rate constant of 185.5 ± 2.2 M−1 s−1 was obtained from the slope of the curve. The geometric surface area of the electrode was 0.0314 cm2, and an average D-value of (1.11×10−3 ± 1.16×10−4) m2 s−1 was obtained for the diffusion of loratadine (Lor) towards the electrode surface. When the effective surface area (0.245 cm2) was used in calculations, an average D-value of (1.83×10−5 ± 1.96×10−6) cm2 s−1 was obtained. ∆I response is the peak current difference of the electrode at a fixed time when Lor analyte was added, and it is in proportion to the loratadine concentration in the range of 20-1000 nM. The limit of detection (LOD) and the limit of quantification (LOQ) of the method were 1.4 and 4.7 nM Lor when the 3Sb/m and 10Sb/m criteria were used, respectively.

Graphical Abstract

Electrochemical amperometric sensing of loratadine using NiO modified paste electrode as an amplified sensor

Keywords


[1] N. Pourshirband, A. Nezamzadeh-Ejhieh, S. N. Mirsattari, Chem. Phys. Lett. 761 (2020) 138090.
[2] A. R. Massah, R. J. Kalbasi, S. Kaviyani, RSC Adv. 3 (2013) 12816-12825.
[3] M. Mehrali-Afjani, A. Nezamzadeh-Ejhieh, H. Aghaei, Chem. Phys. Lett. 759 (2020) 137873.
[4] M. Ghiaci, R.N. Esfahani, H. Aghaei, Catal. Commun. 10 (2009) 777-780.
[5] L. Khazdooz, A. Zarei, T. Ahmadi, H. Aghaei, L. Golestanifar, N. Sheikhan, Res. Chem. Intermed. 44 (2018) 93-115.
[6] H. Aghaei, M. Ghiaci, Reac. Kinet. Mech. Cat. 131 (2020) 233–246.
[7] M. Masteri-Farahani, P. Eghbali, E. Şahin, Colloids Surf. A 570 (2019) 347-353.
[8] H. Aghaei, A. Yasinian, A. Taghizadeh, Int. J. Biol. Macromol. 178 (2021) 569-579.
[9] P. Eghbali, M.U. Gürbüz, A.S. Ertürk, Ö. Metin. Inter. J. Hydrogen Energy 45 (2020) 26274-26285.
[10] H. Aghaei, M. Ghavi, G. Hashemkhani, M. Keshavarz, Int. J. Biol. Macromol. 162 (2020) 74-83.
[11] R. Pankaj, A. A. Parwaz Khan, P. Singh, Sep. Purif. Technol. 247 (2020) 116957.
[12] M. Ghiaci, R.J. Kalbasi, H. Aghaei, Catal. Commun. 8 (2007) 1843-1850.
[13] V. Mathan Raj, L. R. Ganapathy Subramanian, S. Thiyagarajan, V. Edwin Geo, Fuel 234 (2018) 934-943.
[14] I. Rossetti, C. Biffia, L. Bianchi, V. Nichele, M. Signoretto, F. Menegazzo, E. Finocchio, G. Ramis, A. Di Michele, Appl. Catal. B 117–118 (2012) 384–396
[15] W. Yang, X. Zhang, J. Su, Y. Wang, Q. Zhao, J. Zhou, Fuel Proc. Technol. 179 (2018) 108-113.
[16] C. H. Bartholomew, Appl. Catal. A 212 (2001) 17–60
[17] S. Sheik Mansoor, S. Syed Shafi, J. Mol. Liq. 155 (2010) 85-90.
[18] Piet W.N.M. van Leeuwen, Appl. Catal. A 212 (2001) 61–81.
[19] F. Javadi, R. Tayebee, Iran J. Catal. 7 (2017) 283-292.
[20] F. Shirini; M. Abedini; M. Shamsi-Sani; M. Seddighi, Iran. J. Catal. 5 (2017) 223-230.
[21] A. Bamoniri, A. Pourali, Seyed M. R. Nazifi, Iran. J. Catal. 4 (2014) 261-265.
[22] J. Safaei-Ghomi, H. Shahbazi-Alavi, M. R. Saberi-Moghadam, A. Ziarati, Iran. J. Catal. 4 (2014) 289-294.
[23] I. Mohammad, S. Mohsin, S. Muhammad, Chin. Sci. Bull 58 (2013) 2354-2359.
[24] I. Ibrahim Kan, A. Mehmet Kutc, Turk. J. Chem. 36 (2012) 827-840.
[25] H. Karimi-Maleh, A. Ayati, S. Ghanbari, Y. Orooji, B. Tanhaei, F. Karimi, M. Alizadeh, J. Rouhi, L. Fu, M. Sillanpää, J. Mol. Liq. 329 (2021) 115062.
[26] T. Tamiji, A. Nezamzadeh-Ejhieh, J. Taiwan Inst. Chem. Eng. 104 (2019) 130-138.
[27] H. Karimi-Maleh, M. Lütfi Yola, N. Atar, Y. Orooji, F. Karimi, P. Senthil Kumar, J. Rouhi, M. Baghayeri, J. Colloid Interface Sci. 592 (2021) 174–185.
[28] F. Tahernejad-Javazmi, M. Shabani-Nooshabadi, H. Karimi-Maleh, Talanta 176 (2018) 208-213.
[29] H. Karimi-Maleh, K. Cellat, K. Arıkan, A. Savk, F. Karimi, F. Şen, Mater. Chem. Phys. 250 (2020) 123042.
[30] H. Karimi‐Maleh, F. Karimi, M. Alizadeh, A. L. Sanati, Chem. Rec. 20 (2020) 682-692.
[31] C. F. Zinola, M. E. Martins, E. P. Tejera, N. P. Neves, 2012 (2012) 874687.
[32] Y. Holade, K. Servat, S. Tingry, T. W. Napporn, H. Remita, D. Cornu, K. B. Kokoh, ChemPhysChem 18 (2017) 2573-2605.
[33] H. Karimi-Maleh, M. Alizadeh, Y. Orooji, F. Karimi, M. Baghayeri, J. Rouhi, S. Tajik, H. Beitollahi, S. Agarwal, V.K. Gupta, S. Rajendran, S. Rostamnia, L. Fu, F. Saberi-Movahed, S. Malekmohammadi, Ind. Eng. Chem. Res. 60 (2021) 816-823.
[34] S. A. R. Alavi-Tabari, M. A. Khalilzadeh, H. Karimi-Maleh, J. Electroanal. Chem. 811 (2018) 84-88.
[35] H. Karimi-Maleh, M. Sheikhshoaie, I. Sheikhshoaie, M. Ranjbar, J. Alizadeh, N. Wendy Maxakato, A. Abbaspourrad, New J. Chem. 43 (2019) 2362-2367.
[36] Sh. Sun, L. Sun, Sh. Xi, Y. Du, M.U. Anu Prathap, Z. Wang, Q. Zhang, A. Fisher, Zh. J. Xu, Electrochim. Acta 228 (2017) 183-194.
[37] M. H. Nobahari, A. N. Golikand, M. Bagherzadeh, Iran. J. Catal. 7 (2017) 327-335.
[38] Y. Zhang, F. Gao, P. Song, J. Wang, J. Guo, Y. Shiraishi, Y. Du, ACS Sustainable Chem. Eng. 7 (2019) 3176-3184.
[39] P. Song, H. Xu, J. Wang, Y. Zhang, G. Fei, R. Fangfang, S. Yukihide, W. Caiqin, Y. Du, J. Taiwan Inst. Chem. Eng. 93 (2018) 616-624.
[40] F. Gao, Y. Zhang, P. Song, J. Wang, C. Wang, J. Guo, Y. Du, J. Power Sources 418 (2019) 186–192.
[41] H. Ashassi-Sorkhabi, B. Rezaei-Moghadam, E. Asghari, R. Bagheri, R. Kabiri, J. Taiwan Inst. Chem. Eng. 69 (2016) 118-130.
[42] E. Tavakolian, J. Tashkhourian, Z. Razmi, H. Kazemi, M. Hosseini-Sarvari, Sensors Actuators B 230 (2016) 87-93.
[43] F. Gao, Y. Zhang, P. Song, J. Wang, T. Song, C. Wang, L. Song, Y. Shiraishi, Y. Du, J. Mater. Chem. A 7 (2019) 7891-7896.
[44] A. Ehsani, M. Hadi, E. Kowsari, S. Doostikhah, J. Torabian, Iran. J. Catal. 7 (2017) 187-192.
[45] M. Zhiani, S. Majidi, H. Rostami, M. Mohammadi Taghiabadi, Int. J. Hydrogen Energy, 40 (2015) 568-576.
[46] H. Meixner, U. Lampe, Sensors Actuators B 33 (1996) 198-202.
[47] P. Falcaro, R. Ricco, A. Yazdi, I. Imaz, S. Furukawa, D. Maspoch, R. Ameloot, J.D. Evans, C. J. Doonan, Chem. Rev. 307(2016) 237-254.
[48] I. E. Wachs, Catal. Today 27 (1996) 437-455.
[49] M. E. Franke, T. J. Koplin, U. Simon, Nano. Micro Small 2 (2006) 36-50.
[50] T. Tamiji, A. Nezamzadeh-Ejhieh, Mater. Chem. Phys. 237 (2019) 121813.
[51] M. Miraki, H. Karimi-Maleh, M. A. Taher, S. Cheraghi, F. Karimi, Shilpi Agarwal, V. K. Gupta, J. Mol. Liq. 278 (2019) 672-676.
[52] Y. Akbarian, M. Shabani-Nooshabadi, H. Karimi-Maleh, Sensors Actuators B 273 (2018) 228-233.
[53] F. Iazdani, A. Nezamzadeh-Ejhieh, Spectrochim. Acta Part A 250 (2021) 119228
[54] M. Fouladgar, H. Karimi-Maleh, V. Kumar Gupta, J. Mol. Liq. 208 (2015) 78-83.
[55] Q. Zhou, A. Umar, E. M. Sodki, A. Amine, L. Xu, Y. Gui, A. A. Ibrahim, R. Kumar, S. Baskoutas, Sensors Actuators. B 256 (2018) 604-615.
[56] M. S. Alnarabiji, O. Tantawi, A. Ramli, N. A. Mohd Zabidi, O. B. Ghanem, B. Abdullah, Renew. Sustainable Energy Rev. 114 (2019) 109326.
[57] R. Ahmed, Ghulam Nabi, J. Energy Storage 33 (2021) 102115.
[58] J. Safari, S. Gandomi-Ravandi, J. Iran. Chem. Soc. 12 (2015) 147–154.
[59] H. A. Ariyanta, T. A. Ivandini, Y. Yulizar, J. Mol. Struct. 1227 (2021) 129543.
[60] Z. Amani-Beni, A. Nezamzadeh-Ejhieh, Anal. Chim. Acta 1031 (2018) 47-59.
[61] N. Raeisi-Kheirabadi, A. Nezamzadeh-Ejhieh, H. Aghaei, Microchem. J. 162 (2021) 105869.
[62] M. G. Buckley, C. Walters, W. M. Wong, M. I. D. Cawley, S. Ren, L. B. Schwartz, A. F. Walls, Mast Cell Clin. Sci. 93 (1997) 363–370.
[63] F. Simons, K. Simons, New Engl. J. Med. 330 (1994) 1663-1670.
[64] M. Peyrovi, M.R. Hadjmohammadi, J. Chromatogr. B 980 (2014) 41–47.
[65] I. Cardelús, F. Antón, J. Beleta, J. M. Palacios. Eur. J. Pharmacol. 374 (1999) 249-254.
[66] R. F. Orzechowski, D. S. Currie, C. A. Valancius. Eur. J. Pharmacol. 506 (2005) 257-264.
[67] J. Huang, N. Zhu, T. Yang, T. Zhang, P. Wu, Z. Dang, Biosens. Bioelectron. 7 (2015) 332-339.
[68] F. Fazlali, A. Mahjoub, R. Abazari, Solid State Sci. 48 (2015) 263-269.
[69] N. Pourshirband, A. Nezamzadeh-Ejhieh, Solid State Sci. 99 (2020) 106082.
[70] M. Nosuhi, A. Nezamzadeh-Ejhieh, Electrochim. Acta 223 (2017) 47–62.
[71] M. Shahid, C. He, S. Basu, Inter. J. Hydrogen Energy 19 (2020) 11287-11296.
[72] C. Xu, Z. Tian, P. Shen, S. P. Jiang, Electrochim. Acta 53 (2008) 2610–2618.
[73] S. Sharifian, A. Nezamzadeh-Ejhieh, Mater. Sci. Eng. C 58 (2016) 510–520.
[74] X.-Z. Chen, M. J. Coady, F. Jackson, A. Berteloot, J. Y. Lapointe, Biophys. J. (1995) 2405-2414.
[75] A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Second Edition, Wiley, 2000.
[76] R. Karimi Shervedani, M. Bagherzadeh, Sensors Actuators B 139 (2009) 657-664.
[77] P. Kissinger, W. R. Heineman, Laboratory Techniques in Electroanalytical Chemistry, Second Edition, CRC Press, 1996.
[78] C. G. Zoski, Handbook of Electrochemistry, Elsevier Science, 2007.
[79] J. M. Seveant, E. Vianello, Electrochim. Acta 10 (1965) 905–920.
[80] Z. Galus, Fundamentals of Electrochemical Analysis, Ellis Horwood, New York, 1976.
[81] M. S. Tohidi, A. Nezamzadeh-Ejhieh, Int. J. Hydrogen Energy 41 (2016) 8881-8892.
[82] A. Nezamzadeh-Ejhieh, H. Hashemi, Talanta 88 (2012) 201-208.
[83] A. P. Pires Eisele, E. Romᾶo Sartori, Anal. Methods 7 (2015) 8697-8703.