Fe3O4@SiO2@IL‐PVP magnetic nanoparticles: Effective synthesis of spirooxindoles

Document Type : Articles

Authors

Department of Chemistry, Faculty of Science, Yasouj University, Yasouj, 75918-74831, Iran.

Abstract

Various magnetite heterogeneous catalysts for the organic reaction are increasingly recognized while their stability still is a critical challenge. In this regard, SiO2, ionic liquid (IL), and polyvinyl pyrrolidone (PVP) were applied as a three-layer stabilization system for modifying magnetic Fe3O4 to produce Fe3O4@SiO2@IL‐PVP as a novel nanocatalyst. The Fe3O4@SiO2@IL‐PVP as stabilized heterogeneous catalysts were utilized in a robust, and environmentally friendly strategy for the preparation of the spirooxindole derivatives by the one-pot condensation of isatin, malononitrile, and 1,3-dicarbonyl in a water solvent. The proposed method revealed a high yield spirooxindole derivatives preparation (99%) at short reaction times (1.0 min), low catalyst mass (0.002 g), and satisfactory temperature (30 °C) which confirm the lack of any tedious challenge and promising applicability and reusability. This work introduces a rational core-shell nanosystem design with a facile and novel construction strategy to arrive at nonexquisite metal-based composite catalysts with superior catalytic proficiency and prominent long-term stability.

Graphical Abstract

Fe3O4@SiO2@IL‐PVP magnetic nanoparticles: Effective synthesis of spirooxindoles

Highlights

  • Fe3O4@SiO2@IL‐PVP nanoparticles synthesized and used as a magnetic catalyst.
  • Catalyst applied for the synthesis of spirooxindole derivatives.
  • Fe3O4@SiO2@IL‐PVP NPs show good catalytic activity.
  • The catalyst is a stable, recyclable, and eco-benign catalyst for this transformation.

Keywords


[1] A. Ghorbani-Choghamarani, M. Norouzi, Appl. Organometal. Chem. 30 (2016) 140–147.
[2] J. Davarpanah, S. Elahi, P. Rezaee, J. Porous Mater.25 (2018) 161-170.
[3] G. Azadi, A. Ghorbani-Choghamarani, Appl. Organometal. Chem. 30 (2016) 360–366
[4] J. Davarpanah, A. R. Kiasat, Catal. Commun, 42 (2013) 98-103.
[5] A. Ghorbani-Choghamarani, G. Azadi, RSC Adv, 5 (2015) 9752-9758.
[6] M. A. Zolfigol, V. Khakyzadeh, A. R. Moosavi-Zare, A. Rostami, A. Zare, N. Iranpoorc, M. H. Beyzavid, R. Luque,GreenChem. 15(2013) 2132–2140.
[7] B. Atashkar, A. Rostami, B. Tahmasbi, Catal. Sci. Technol, 3 (2013) 2140–2146.
[8] L. Shiri, A. Ghorbani-Choghamarani, M. Kazemi, Res. Chem. Intermed. 43 (2017) 2707–2724
[9] S. Rayati, F. Nejabat, S. Zakavi, Inorg. Chem. Commun., 40 (2014) 82–86.
[10] A. Rostami, B. Tahmasbi, F. Abedi, Z. Shokria,J. Mol. Catal.A: Chem. 378 (2013) 200–205
[11] W. Wu, Q. He, C. Jiang, Nanoscale Res. Lett. 3 (2008) 397–415.
[12] M. Esmaeilpour, J. Javidi, F. Nowroozi-Dodeji, M. Mokhtari-Abarghoui, Transition Met. Chem. 39 (2014) 797-809.
[13] A. Kong, P. Wang, H. Zhang, F. Yang, S. P. Huang, Y. Shan, Appl. Catal. A: Gen. 417 (2012) 183–189.
[14] D. K. Kim, M. Mikhaylova, F. H. Wang, J. Kehr, B. Bjelke, Y. Zhang, M. Muhammed, Chem. Mater. 15 (2003) 4343–4351.
[15] L. F. Gamarra, G. E. S. Brito, W. M. Pontuschka, E. Amaro, A. H. C. Parma, G. F. Goya, J. Magn. Magn. Mater. 289 (2005) 439-441.
[16] E. H. Kim, H. S. Lee, B. K. Kwak, B. K Kim, J. Magn. Magn. Mater. 289 (2005) 328-330.
[17] N. Kohler, G. E. Fryxell, M. Zhang, J. Am. Chem. Soc. 126 (2004) 7206-7211.
[18] B. Schöpf, T. Neuberger, K. Schulze, A. Petri, M. Chastellain, M. Hofmann, H. Hofmann, B. Von Rechenberg, J. Magn. Magn. Mater. 293 (2005) 411-418.
[19] M. Iijima, Y. Yonemochi, M. Tsukada, H. Kamiya, J. Colloid Interface Sci. 298 (2006) 202-208.
[20] Y. Zhang, J. Y. Liu, S. Ma, Y. J. Zhang, X. Zhao, X. D. Zhang, Z. D.; Zhang, J. Mater. Sci. Mater. Med. 21 (2010) 1205-1210.
[21] M. Faraji, Y. Yamini, M. Rezaee, J. Iran. Chem. Soc. 7 (2010) 1-37.
[22] a) M. Benaglia, A. Puglisi, F. Cozzi, Chem. Rev. 103 (2003) 3401-3430.; b) F. Cozzi, Adv. Synth. Catal. 348 (2006) 1367-1390.
[23] S. M.Baghbanian, N. Rezaeia, H. Tashakkorian, Green Chem. 15 (2013) 3446-3458.
[24] R. S. Priya, P. Karthikeyan, Mater. Today Chem. 1 (2016) 46-51.
[25] A. R. Kiasat, J. Davarpanah, J. Mol. Cat. A: Chem. 373 (2013)46–54.
[26] H. R. Shaterian, M. Ghashang, M. Feyzi, Appl. Catal. A: Gen. 2 (2008) 128–33.
[27] K. Ding, Y. Lu, Z. Nikolovska-Coleska, S. Qiu, Y. Ding, W. Gao, J. Stuckey, K. Krajewski, P. P. Roller, Y. Tomita, D. A. Parrish, J. Am. Chem. Soc. 29 (2005) 10130-10131.
[28] B. K. S. Yeung, B. Zou, M. Rottmann, S. B. Lakshminarayana, S. H. Ang, S. Y. Leong, J. Tan, J. Wong, S. Keller-Maerki, C. Fischli, A. Goh, E. K. Schmitt, P. Krastel, E. Francotte, K. Kuhen, D. Plouffe, K. Henson, T. Wagner, E. A. Winzeler, F. Petersen, B. Reto, V. Dartois, T. Diagana, T. H. T. Keller. J. Med. Chem. 14 (2010) 5155–5164.
[29] K. Lundahl, J. Schut, J. L. M. A. Schlatmann, G. B. Paerels, and A. Peters. J. Med. Chem. 2 (1972) 129–132.
[30] A. Thangamani, Eur. J. Med. Chem. 12 (2010) 6120–6126.
[31] A. J. Kell, D. L. B. Stringle, M. S. Workentin, Org. Lett. 2 (2000) 3381-3384.
[32] K.C. Nicolaou, S. Sanchini, D. Sarlah, G. Lu, T.R. Wu, D.K. Nomura, B.F. Cravatt, B. Cubitt, J.C. de la Torre, A.J. Hessell, D.R. Burton, Proc. Natl. Acad. Sci. U.S.A. 108 (2011) 6715-6720.
[33] P. Prasanna, K. Balamurugan, S. Perumal, P. Yogeeswari, D. Sriram, Eur. J. Med. Chem. 45 (2010) 5653-5661.
[34] A. Nandakumar, P. Thirumurugan, P.T. Perumal, P. Vembu, M.N. Ponnuswamy, P. Ramesh, Bioorg. Med. Chem. Lett. 20 (2010) 4252-4258.
[35] G. Shanthi, G. Subbulakshmi, P. T. Perumal,Tetrahedron 63 (2007) 2057-2063.
[36] S. Gao, C. H. Tsai, C. Tseng, C. F. Yao. Tetrahedron.64 (2008) 9143-9149.
[37] R. Sridhar, B. Srinivas, B. Madhav, V. P. Reddy, Y. V. D. Nageswar, K. R.Rao, Can. J. Chem. 87 (2009) 1704-1707.
[38] M. Dabiri, M. Bahramnejad, M. Baghbanzadeh. Tetrahedron. 65 (2009) 9443-9447.
[39] S. L. Zhu, S. J. Ji, Y. Zhang. Tetrahedron. 63 (2007) 9365-9372.
[40] G. S. Hari, Y. R. Lee. Synthesis.3 (2010) 453-464.
[41] L. M. Wang, N. Jiao, J. Qiu, J. J. Yu, J. Q. Liu, F. L. Guo, Y. Lu, Tetrahedron. 66 (2010) 339-343.
[42] Gh. Mohammadiziarani, A. Badiei, S. Mousavi, N. Lashgari, A. Shahbazi, Chin. J. Catal. 33 (2012) 1832-1839.
[43] A. R. Hasaninejad, N. Golzar, M. Beyrati, A. Zare, M. M. Doroodmand, J. Mol. Catal. A. Chem. 372 (2013) 137-150.
[44] Z. Karimi, A. H, Fereydoonnezhad, Iran. Chem. Commun. 5 (2017) 407-416.
[45] M. Esmaeilpour, J. Javidi, M. Divar, J. Magn. Magn. Mater.423 (2017) 232-240.
[46] Sh. Vaysipour, M. Nasr‐Esfahani, Z. Rafiee, Appl. Org. Chem. 33 (2019) 1-11.
[47] N. Azgomi, M. Mokhtary, J. Mol. Catal. A: Chem. 398 (2015) 58-64.
[48] C. Garkoti, J. Shabir, S. Mozumdar, New J. Chem. 41 (2017) 9291-9298.
[49] Y. Li, H. Chen, Ch. Shi, D. Shi, Sh. Ji, J. Comb. Chem. 12 (2010) 231-237.
[50] M. Kidwai, A. Jahan, N.K. Mishra, Appl. Catal. A Gen. 425 (2012) 35-43.
[51] Z. Karimi Jaberi, Iran. Chem. Commun., 5 (2017) 407-416.
[52] M. N. Elinson, A. S. Dorofeev, F. M. Miloserdov, G. I. Nikishin, Mol. Divers. 13 (2009) 47-52.
[53] R. Jamatia, A. Gupta, A. K. Pal, RSC. Adv., 6 (2016) 20994-21000.
[54] G. D. Wang, X. N. Zhang, Z. H, Zhang, J. Heterocycl. Chem. 50 (2013) 61-65.
[55] H. Hasani, M. Irizeh, Asian J. Green Chem. 2 (2018) 85-95.