Effects of strontium and copper substitution on the catalytic performance of LaCoO3 in the combustion of methane: an optimization study

Document Type : Articles


Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran


Cobalt-based perovskites containing strontium and copper (La1-xSrxCo1-yCuyO3) were synthesized by the sol-gel method and characterized by XRD, H2-TPR, N2-adsorbtion, XRF and XPS techniques. The XRD results showed that the rhombohedral structure of perovskites was obtained. The activation energy employed to analyze the activities of samples in the combustion of methane was optimized using full factorial design (FD) by considering strontium (x=0, 0.1 and 0.2) and copper (y=0, 0.25 and 0.5) as the input variables. Analysis of Variance (ANOVA) was employed to investigate the obtained data and a p

Graphical Abstract

Effects of strontium and copper substitution on the catalytic performance of LaCoO3 in the combustion of methane: an optimization study


  • The sol-gel method was successfully employed in the synthesis of cobalt-based perovskites containing strontium and copper (La1-xSrxCo1-yCuyO3).
  • High activity could be due to the higher surface area, higher amounts of oxygen species, better reducibility and oxygen mobility.
  • At high concentrations of Sr and Cu, the segregated oxide phases and lower surface area of the investigated catalysts could be the main reasons for the lower catalytic combustion activity.


[1] R. Hu, R. Ding, J. Chen, J. Hu, Y. Zhang, Preparation and catalytic activities of the novel double perovskite-type oxide La2CuNiO6 for methane combustion, Catal. Commun., 21 (2012) 38-41.
[2] L. Marchetti, L. Forni, Catalytic combustion of methane over perovskites, Appl. Catal. B: Environ., 15 (1998) 179-187.
[3] R.J. Liu, P.A. Crozier, C.M. Smith, D.A. Hucul, J. Blackson, G. Salaita, Metal sintering mechanisms and regeneration of palladium/alumina hydrogenation catalysts, Appl. Catal. A, 282 (2005) 111-121.
[4] S. Royer, F. Berube, S. Kaliaguine, Effect of the synthesis conditions on the redox and catalytic properties in oxidation reactions of LaCo1−xFexO3, Appl. Catal. A, 282 (2005) 273-284.
[5] J. Yang, Y. Guo, Nanostructured perovskite oxides as promising substitutes of noble metals catalysts for catalytic combustion of methane, Chin. Chem. Lett., 29 (2018) 252-260.
[6] G. Zou, M. Chen, W. Shangguan, Promotion effects of LaCoO3 formation on the catalytic performance of Co–La oxides for soot combustion in air, Catal. Commun., 51 (2014) 68-71.
[7] I. Rossetti, L. Forni, Catalytic flameless combustion of methane over perovskites prepared by flame–hydrolysis, Appl. Catal. B: Environ., 33 (2001) 345-352.
[8] G. Pecchi, C. Campos, O. Peña, L.E. Cadus, Structural, magnetic and catalytic properties of perovskite-type mixed oxides LaMn1−yCoyO3 (y= 0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0), J. Mol. Catal. A: Chem., 282 (2008) 158-166.
[9] D. Maiti, Y.A. Daza, M.M. Yung, J.N. Kuhn, V.R. Bhethanabotla, Oxygen vacancy formation characteristics in the bulk and across different surface terminations of La(1−x)Sr xFe(1−y)CoyO(3−δ) perovskite oxides for CO2 conversion, J. Mater. Chem. A, 4 (2016) 5137-5148.
[10] J. Chen, M. Shen, X. Wang, J. Wang, Y. Su, Z. Zhao, Catalytic performance of NO oxidation over LaMeO3 (Me= Mn, Fe, Co) perovskite prepared by the sol–gel method, Catal. Commun., 37 (2013) 105-108.
[11] E. Campagnoli, A. Tavares, L. Fabbrini, I. Rossetti, Y.A. Dubitsky, A. Zaopo, L. Forni, La1− xAxCo1− yFeyO3±δ(A′= Ce, Sr) catalysts for the flameless combustion of methane, J. Mater. Sci., 41 (2006) 4713-4719.
[12] Y. Wu, L. Li, B. Chu, Y. Yi, Z. Qin, M. Fan, Q. Qin, H. He, L. Zhang, L. Dong, Catalytic reduction of NO by CO over B-site partially substituted LaM0. 25Co0.75O3 (M= Cu, Mn, Fe) perovskite oxide catalysts: The correlation between physicochemical properties and catalytic performance, Appl. Catal. A: General, 568 (2018) 43-53.
[13] A. Glisenti, M. Pacella, M. Guiotto, M.M. Natile, P. Canu, Largely Cu-doped LaCo1−xCuxO3 perovskites for TWC: Toward new PGM-free catalysts, Appl. Catal. B: Environ., 180 (2016) 94-105.
[14] H. Rezaei Shadegan, S. Maghsoodi, B. Ghanavati, A. Shahbazi Kootenaei, A. Azimi, Catalytic combustion of methane over La2BCoO6 perovskites containing Ni, Cu and Fe: impact of B-sites on oxygen species and catalytic activity, Reac. Kin., Mech. Catal., 131 (2020) 737-752.
[15] Z. Wang, R. Peng, W. Zhang, X. Wu, C. Xia, Y. Lu, Oxygen reduction and transport on the La1− xSrxCo1−yFeyO3− δ cathode in solid oxide fuel cells: A first-principles study, J. Mater. Chem. A, 1 (2013) 12932-12940.
[16] C.H. Kim, G. Qi, K. Dahlberg, W. Li, Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust, Science, 327 (2010) 1624-1627.
[17] L. Zhang, Y. Zhang, H. Dai, J. Deng, L. Wei, H. He, Hydrothermal synthesis and catalytic performance of single-crystalline La2−xSrxCuO4 for methane oxidation, Catal. Today, 153 (2010) 143-149.
[18] N. Tien-Thao, H. Alamdari, M. Zahedi-Niaki, S. Kaliaguine, LaCo1−xCuxO3−δ perovskite catalysts for higher alcohol synthesis, Appl. Catal. A, 311 (2006) 204-212.
[19] A.Z. Varzaneh, M.S. Moghaddam, J.T. Darian, Oxidative dehydrogenation of propane over vanadium catalyst supported on nano-HZSM-5, Petrol. Chem., 58 (2018) 13-21.
[20] A.Z. Varzaneh, A.H.S. Kootenaei, J. Towfighi, A. Mohamadalizadeh, Optimization and deactivation study of Fe–Ce/HZSM-5 catalyst in steam catalytic cracking of mixed ethanol/naphtha feed, J. Anal. Appl. Pyrol., 102 (2013) 144-153.
[21] Y. Wu, B. Chu, M. Zhang, Y. Yi, L. Dong, M. Fan, G. Jin, L. Zhang, B. Li, Influence of calcination temperature on the catalytic properties of LaCu0.25Co0.75O3 catalysts in NOx reduction, Appl. Surf. Sci., 481 (2019) 1277-1286.
[22] J.A. Onrubia, B. Pereda-Ayo, U. De-La-Torre, J.R. González-Velasco, Appl. Catal. B: Environ., 213 (2017) 198-210.
[23] B. Kucharczyk, K. Adamska, W. Tylus, W. Miśta, B. Szczygieł, J. Winiarski, Effect of Silver Addition to LaFeO3 Perovskite on the Activity of Monolithic La1−xAgxFeO3 Perovskite Catalysts in Methane Hexane Oxidation, Catal. Lett., 149 (2019) 1919-1933.
[24] B. Kucharczyk, W. Tylus, Metallic monolith supported LaMnO3 perovskite-based catalysts in methane combustion, Catal. Lett., 115 (2007) 122-132.
[25] K. Sutthiumporn, T. Maneerung, Y. Kathiraser, S. Kawi, CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M = Bi, Co, Cr, Cu, Fe): Roles of lattice oxygen on C–H activation and carbon suppression, Int. J. Hyd. En., 37 (2012) 11195-11207.
[26] Y. Wu, G. Li, B. Chu, L. Dong, Z. Tong, H. He, L. Zhang, M. Fan, B. Li, L. Dong, NO Reduction by CO over Highly Active and Stable Perovskite Oxide Catalysts La0.8Ce0.2M0.25Co0.75O3 (M = Cu, Mn, Fe): Effect of the Role in B Site, Indust. Eng. Chem. Res., 57 (2018) 15670-15682.
[27] G. Valderrama, A. Kiennemann, M.R. Goldwasser, La-Sr-Ni-Co-O based perovskite-type solid solutions as catalyst precursors in the CO2 reforming of methane, J. Power Sourc., 195 (2010) 1765-1771.
[28] S.S. Maluf, E.Y. Tanabe, P.A.P. Nascente, E.M. Assaf, Study of Water–Gas-Shift Reaction over La(1−y)SryNixCo(1−x)O3 Perovskite as Precursors, Topics in Catal., 54 (2011) 210-218.
[29] C. Deng, Q. Huang, X. Zhu, Q. Hu, W. Su, J. Qian, L. Dong, B. Li, M. Fan, C. Liang, Appl. Surf. Sci., 389 (2016) 1033-1049.
[30] E.J. Crumlin, E. Mutoro, W.T. Hong, M.D. Biegalski, H.M. Christen, Z. Liu, H. Bluhm, Y. Shao-Horn, In Situ Ambient Pressure X-ray Photoelectron Spectroscopy of Cobalt Perovskite Surfaces under Cathodic Polarization at High Temperatures, J. Physic. Chem. C, 117 (2013) 16087-16094.
[31] A.Z. Varzaneh, J. Towfighi, A.H.S. Kootenaei, A. Mohamadalizadeh, Effect of cerium and zirconium nanoparticles on the structure and catalytic performance of SAPO-34 in steam cracking of naphtha to light olefins, React. Kin., Mech. Catal., 115 (2015) 719-740.
[32] Y. Zheng, K. Li, H. Wang, D. Tian, Y. Wang, X. Zhu, Y. Wei, M. Zheng, Y. Luo, Designed oxygen carriers from macroporous LaFeO3 supported CeO2 for chemical-looping reforming of methane, Appl. Catal. B: Environ., 202 (2017) 51-63.
[33] S. Royer, H. Alamdari, D. Duprez, S. Kaliaguine, Oxygen storage capacity of La1− xA′xBO3 perovskites (with A′= Sr, Ce; B= Co, Mn)—relation with catalytic activity in the CH4 oxidation reaction, Appl. Catal. B: Environ., 58 (2005) 273-288.
[34] X. Yang, Q. Gao, Z. Zhao, Y. Guo, Y. Guo, L. Wang, Y. Wang, W. Zhan, Surface tuning of noble metal doped perovskite oxide by synergistic effect of thermal treatment and acid etching: A new path to high-performance catalysts for methane combustion, Appl. Catal. B: Environ., 239 (2018) 373-382.
[35] X. Tan, N. Han, H. Chen, L. Su, C. Zhang, Y. Li, Investigation of perovskite BaCe1-xMnxO3-δ for methane combustion, Ceram. Int., (2020).
Volume 11, Issue 2
June 2021
Pages 137-147
  • Receive Date: 14 August 2020
  • Revise Date: 17 April 2021
  • Accept Date: 23 April 2021
  • First Publish Date: 01 June 2021