Encapsulation of a Cu(II) complex with 2,6-pyridine dicarboxylic acid in zeolite-X nanoporosity as an efficient heterogeneous catalyst for oxidation of aniline

Document Type : Articles

Authors

1 Department of Chemistry, Faculty of Science, Yazd Branch, Islamic Azad University, Yazd, Iran

2 Department of Chemistry, Faculty od Science, Qom Branch, Islamic Azad University, Qom, Iran

3 Department of Biomedical Engineering, Faculty of Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran

Abstract

The Cu(II) complex of 2,6-pyridine dicarboxylic acid (PydcH2, dipiconilic acid) was successfully prepared and readily trapped in the nanocavity of zeolite-X (NaX) through a flexible synthetic method. The characterization of nanocomposite ([Cu(pydcH2)(pydc)]-NaX) was performed by FT-IR, XRD, BET isotherm, SEM, TEM, and elemental analysis, that approved the encapsulating of coordination compound in the channels of NaX, with no change in the zeolite structure and morphology. The catalytic activity of the prepared material was also studied in respect of the oxidation of aniline with hydrogen peroxide as an oxidizing agent. The experiments were performed to optimize aniline oxidation under different extents of catalyst, temperature, and time. Optimized reaction conditions of this catalyst exhibited moderate activity (~92%) of aniline oxidation. This catalyst was stable in the oxidation of aniline as recovered and reused for an additional three runs. The outcomes reflected that the catalyst was reusable with no considerable loss in the catalytic activity.

Graphical Abstract

Encapsulation of a Cu(II) complex with 2,6-pyridine dicarboxylic acid in zeolite-X nanoporosity as an efficient heterogeneous catalyst for oxidation of aniline

Highlights

  • This work describes the experimental results of a comprehensive study conducted to synthesis of nanodimensional microreactor containing Cu(II) complex of pyridine-2,6-dicarboxylic acid. 
  • The copper(II) complex with pyridine-2,6-dicarboxylic acid donor ligand was readily trapped in the nanocavity of zeolite-X through a flexible synthetic method.
  • The catalytic activity of his nanocomposite material was investigated for the oxidation of aniline was evaluated under heterogeneous condition using hydrogen peroxide as an oxidant.

Keywords


[1]. S. Zhang, Q. Fan, R. Xia, T.J. Meyer, Acc. Chem. Res. 53 (2020) 255–264
[2]. E. Larsen, K.A. Jørgensen, Acta Chem. Scand. 43 (1989) 259-263
[3]. A. Arora, S. Singh, P. Oswal, D. Nautiyal, G.K.Rao, S. Kumar, A. Kumar, Coord. Chem. Rev. 438 (2021) 213885-213899
[4]. N.D. Knçfel, H. Rothfuss, J. Willenbacher, C. Barner-Kowollik, P.W. Roesky, Angew. Chem. Int. Ed. 56 (2017) 4950 –4954
[5]. V.S. Shende, V.B. Saptal, B.M. Bhanage, Chem. Rec. 19 (2019) 1–23
[6]. S. Kumari, S. Ray, New J. Chem. 44 (2020) 44, 14953-14963
[7]. R. Bera, C. Adhikary, J. P. Mat. 28 (2021) 695–702
[8]. I. Chorkendorff, J.W. Niemantsverdriet, Concept of modern catalysis and kinetics, Wiley-VCH GmbH & Co. KGaA, Weinheim, Germany, 2003
[9]. A. Dergunov, A.T. Khabiyev, S.N. Shmakov, M.D. Kim, N. Ehterami, ACS Nano, 10 (2016) 11397-11406
[10].         P. Eghbali, E. Şahin, M. Masteri-Farahani, J. Porous Mat. 24 (2017) 39-44
[11].         R. Abraham, K.K.M. Yusuff, J. Mol. Catal. A: Chem. 198 (2003) 175-183
[12].         C. Jin, W. Fan, Y. Jia, B. Fan, J. Ma and R. Li, J. Mol. Catal. A: Chem., 249 (2006) 23-30.
[13].         A. Primo and H. Garcia, Chem. Soc. Rev., 43 (2014) 7548-7561.
[14].         A.P. Sameeha, M. Sebastian, P.M.S. Begum, K.K.M. Yusuff, Chem. Data Collect. 26 (2020) 100351-52
[15].         F. Li, D. Hu, Y. Yuan, B. Luo, Y. Song, S. Xiao, G. Chen, Y. Fang, F. Lu, Mol. Catal. 452 (2018) 75–82
[16].   K.S. Ambili, J. Thomas, J. Porous Mat. 27 (2020) 755-764
[17].   A.H. Ahmed, M.S. Thabet, J. Mol. Struct. 1006 (2011) 527-535
[18].   S. Rayati, N. Rafiee, F. Nejabat, Inorg. Chem. Res. 4 (2020) 86-93
[19].   B.P. Nethravathi, J. Porous Mat. 23 (2016) 1305-1310
[20].   M.R. Maurya, A.K. Chandrakar, S.H. Chand, J. Mol. Catal. A Chem. 263 (2007) 227-237
[21].   L.G. Qiu, A.J. Xie, L.D. Zhang, Adv. Mater. 17 (2005) 689-692
[22].   A.A. Varghese, K.K.M. Yusuff, Mater. Today, 25 (2020) 186-191
[23].   M. Sharma, B. Das, A. Hazarika, N.S.V.M. Rao Mangina, G.V.Karunakar, K.K. Bania, Micropor. Mesopor. Mat. 272 (2018) 31-39
[24].   J. Kenneth, J.R. Balkus, A.A. Welch, B.E. Gnade, Zeolites 10 (1990) 722-729
[25].   H. Wang, L. Wang, F.S. Xiao, ACS Cent. Sci. 6 (2020) 1685−1697
[26].   X. Yuan, F. Li, L. Wang, H.A. Luo, Latin Am. Appl. Res. 37 (2007) 151-156
[27].   M. Salavati-Niasari, J. Incl. Phenom Macro. Chem. 65 (2009) 317-328
[28].   R. Ferreira, M. Silva, C. Freire, B. Castro, J.L. Figueiredo, Microporous Mesoporous Mater. 38 (2000) 391-401
[29].   J. Yu, Z. Zhen, Q. Ding, Y. Zhang, X. Wu, L. Sun, J. Du, Catal. Today, 339(2020) 105-112
[30].   A. Benito, A. Penades, J.L. Lliberia, R. Gonzalez-Olmos, Chemosphere 166 (2017) 230-237
[31].   X. Li, Shao D, H. Xu H, L. Wei, Y. Wei, Chem Eng J. 285 (2016) 1-10
[32].   K.J. Balkus, K.T. Ly, J. Chem. Educ. 68 (1991) 875-877
[33].   C.K. Modi, P.M. Trivedi, Adv. Mat. Lett. 3 (2012) 149-153
[34].   M. Davidova, D. Nachtigallova, R. Bulanek, P. Nachtigall, J. Phys. Chem. B 107 (2003) 2327-2332
[35].   N. Gupta, A.K. Kushwaha, M.C. Chattopadhyaya, Adv. Mat. Lett. 2 (2011) 309-312
[36].   A.G. Charles, Eur. J. Mineral. 24 (2012) 439-445
[37].   M. Ramalingam, N. Sundaraganesan, H. Saleem, J. Swaminathan, Spectrochim. Acta A Mol. Biomol. Spectrosc. 71 (2008) 23-30
[38].   S. Priyanka, N.P. Singh, R.A. Yadav, J. Chem. Pharm. Res. 2 (2010) 656-681
[39].   H. Aghabozorg, F. Ramezanipour, J. Soleimannejad, M.A. Sharif, A. Shokrollahi, M. Shamsipur, A. Moghimi, J. Attar Gharamaleki, V. Lippolis, A.J. Blake, Polish J. Chem. 82 (2008) 487-507
[40].   D.H. Robert, A.T. David, Inorg. Nucl. Chem. Lett. 3 (1967) 419-422
[41].   R.A. Yadav, M. Kumar, R. Singh, S. Priyanka, N.P. Singh, Spectrochim. Acta Part A 84 (2011) 6-21
[42].   S. Golbad, P. Khoshnoud, G. Keleney, N. Abu‐Zahra, Water Environ. J. 34 (2019) 342-349
[43].   J. Scott, D. Guang, K. Naeramitmarnsuk, M. Thabuot, R. Amal, J. Chem. Technol. Biotechnol., 77 (2001) 63-69
[44].   C.K. Modi, M.T. Parthiv, Adv. Mat. Lett. 3 (2012) 149-153
[45].   A. Kozlov, K. Asakura, Y. Iwasawa, J. Chem. Soc. Faraday Trans. 94 (1998) 809-816
[46].   S.A. Chavan, D. Srinivas, P. Ratnasamy, Chem. Commun. 12 (2001) 1124-1125
[47].   M. Anbia, F. Mohammadi Nejati, M. Jahangiri, A. Eskandari, V. Garshasbi, J. Sci. I.R.I. 26 (2015) 213-222
[48].   H. Naeimi, M. Moradian, Appl. Catal. A 467 (2013) 400-406
[49].   A. Mohammadi Zardkhoshoui, S.S. Hosseiny Davarani, Nanoscale 12 (2020) 12476-12489
[50].   H.S. Abbo, S.J. Titinchi, Top Catal. 53 (2010) 1401–1410
[51].   H. Mimura, K. Yokota, K. Akiba, Y. Onodera, J. Nucl. Sci. Technol. 38 (2001) 766-772
[52].   C. Belviso, F. Cavalcante, S. Fiore, Waste Manage. 30 (2010) 839-847
[53].   P. Pengthamkeerati, T. Satapanajaru, P. Chularuengoaksorn, Fuel 87 (2008) 2469-2476
[54].   S. Ahmadi, C.A. Igwegbe, Appl. Water Sci. 8 (2018) 170, 1-8
[55].   Y.Z. Zhan, H.L. Li, Y.L. Chen, J. Hazard. Mater. 180 (2010) 481–485
[56].   J. Qian, K. Wang, Q. Guan, H. Li, H. Xu, Q. Liu, W. Liu, B. Qiu, Appl. Surf. Sci. 288 (2014) 633-640
[57].   V. Huleaa,  E. Dumitriu, Appl. Catal. A-Gen. 277 (2004) 99–106
[58].   I. Ambat, V. Srivastava, E. Haapaniemi, M. Sillanpaa, Renew. Energ. 139 (2019) 1428-1436
[59].   M. Tabatabaee, S. Hashemian, M. Roozbeh, M. Roozbeh, M. Mirjalili, Res. Chem. Intermed. 41 (2015) 231-234
[60].   M.H. Alizadeh, R. Tayebee, J. Braz. Chem. Soc. 16 (2005) 108–111.