Adsorption of silver ions from aqueous solutions using copolymer containing sodium methacrylate functional groups

Document Type : Articles

Authors

Istanbul University Faculty of Engineering, Department of Chemistry, 3420 Avcılar Istanbul, Turkey

Abstract

The negative effects of silver, which is one of the heavy metals, on the environment are known. Hence, to remove this dangerous heavy metal from the environment, poly(methacrylic acid), whose adsorption capability has been tested in previous studies, was used. But unfortunately, it performed poorly for silver ions. Therefore, this polymer was modified as poly(sodium methacrylate) using NaOH catalyst and used in the adsorption experiment process to obtain more efficient results. Some important functional groups in the modified copolymer were analyzed by FTIR measurement and the thermal stability of the copolymer by TGA measurement. To better interpret the adsorption process, some isotherms such as Freundlich, Langmuir, and Dubinin-Radushkevich (D-R) isotherms were examined. Using the (D-R) isotherm, the reaction energy was found to be 8.98 kJ/mol, which indicates that the adsorption process is of a chemical ion exchange type. The data from the experimental processes were also evaluated with some kinetic models such as the Elovich, the modified Freundlich, the pseudo-first-order, and the pseudo-second-order kinetic models. Among these models, the pseudo-second-order kinetic models of the adsorption of Ag(I) on poly(sodium methacrylate) showed the best agreement with the experimental data.

Graphical Abstract

Adsorption of silver ions from aqueous solutions using copolymer containing sodium methacrylate functional groups

Highlights

  • Adsorption ability of poly(methacrylic acid) was low, for this reason the available group of carboxylic acid converted to the group of sodium methacrylate.
  • With increasing the amount of adsorbent, the adsorbent percentage increased.
  • An increase in the Ag(I) concentration resulted in a decrease in the percentage of adsorbed Ag(I). 
  • The value of free energy (E = 8.98 KJ/mol) showed the adsorption process may be carried out via chemical ion-exchange.
  • The adsorption capacity of Ag(I) increased nonelinearly with increase of contact time and rose to a maximum value when the contact time reached 10 min.
  • Kinetic data obtained from experimental result fitted better to the pseudo-second order kinetic model than others.

Keywords


[1] T. O. Ajiboye, O. A. Oyewo, D. C. Onwudiwe, Appl. Sci. 262 (2021) 128379.
[2] C. Duan, T. Ma, J. Wang, Y. Zhou, J. water, Process. Eng. 37 (2020)101339.
[3] A. S. Ertürk, J. Iran. Chem. Soc. 15 (2018) 1685-1698.
[4] M. Hasanpour, M. Hatami, Adv. Colloid. Interface. Sci. 284 (2020) 102247.
[5] T. Mathialagan, T. Viraraghavan, J. Hazard. Mater. B94 (2002) 291-303.
[6] H. Shirzadi, A. Nezamzadeh-Ejhieh, J. Mol. Liq. 230 (2017) 221-229.
[7] Q. Shen, M. Liu, D. Yu, H. Gao, Y. Liu, X. Liu, J. Chin. Chem. Soc. 65(5) (2018) 591-596.
[8] M. Hosoba, K. Oshita, R. K. Katarina, T. Takayanagi, M. Oshima, S. Motomizu, Anal. Chim. Acta 639 (2009) 51-56.
[9] P. L. Drake, K. J. Hazelwood, Ann. Occup Hyg. 49(7) (2005) 575-585.
[10] A. R. Jacobson, M. B. Mcbride, P. Baveye, T. S. Steenhuis, Sci. Total. Environ. 345 (2005) 191-205.
[11] M. J. Eckelman, T. E. Graedel, J. Environ. Sci. Technol. 41 (2007) 6283-6289.
[12] M. Hosoba, K. Oshita, R. K. Katarina, T. Takayanagi, M. Oshima, S. Motomizu, Anal. Chim. Acta. 639 (2009) 51-56.
[13] A. Dabrowski, Adv. Colloid. Interface. Sci. 93(2001)135-224.
[14] H. Y. Huo, H. J. Su, T. W. Tan, Chem. Eng. J. 150(1) (2009) 139-141.
[15] K. S. Shin, E. M. Choi, T. S. Hwang, Desalination. 263(1-3) (2010) 151-158.
[16] B. Pollet, J. P. Lorimer, S. S. Phull, J. Y. Hihn. Ultrason. Sonochem. 7(2) (2000) 69-76.
[17] A. R. Ladhe, P. Frailie, D. Hua, M. Darsillo, D. Bhattacharyya, J. Membr. Sci. 326(2) (2009) 460-471.
[18] G. Y. Zang, Y. Q. Lin, M. K. Wang, J. Environ. Sci. 23(3) (2011) 461-4667.
[19] M. A. Abd El-Ghaffar, M. H. Mohamed, K. Z. Elwakeel, Chem. Eng. J. 151(1-3) (2009) 30-38.
[20] G. Mohammadnezhad, A. K. Behbahan, J.  Iran. Chem. Soc. 17 (2020)1259-1281.
[21] M. Borandegi, A. Nezamzadeh-Ejhieh, Colloids Surf. A  Physiocochem. Eng. Asp. 479 (2015) 35-45.
[22]  H. Tokuyama, J. Hiseada, S, Nii, S. Sakohara, Sep. Purif. Technol. 71(1) (2010) 83-88.
[23] S. Kagaya, H. Miyazaki, M. Ito, K. Tohda, T. Kanbara, J. Hazard. Mater. 175(1-3) (2010) 1113 -1115.
[24] Y. Kanai, T. Oshima, Y. Baba, Ind. Eng. Chem. Res. 47(9) (2008) 3114-3120.
[25] X. H. Wang, Y. Zheng, A. Q. Wang, J. Hazard. Mater. 168(2-3) (2009) 970-977.
[26] K. Z. Elwakeel, Desalination. 250(1) (2010) 105-112.
[27] Z. P. Zang, Z. Hu, Z. H. Li, Q. He, X. J. Change, J. Hazard. Mater. 172(2-3) (2009) 958-963.
[28] A. Stafiej, K. Pyrzynska, Sep. Purif. Technol. 58(1) (2007) 49-52.
[29] D. H. Shin, Y. G. Ko, U. S. Choi, W. N. Kim, Ind. Eng. Chem. Res. 43(9) (2004) 2060-2066.
[30] N. Biçak, B. F. Şenkal, T. Yarbaş, Macromol. Chem. Phys. 199 (1998) 2731-2735
[31] C. Özeroğlu, G. Keçeli, Radiochim. Acta. 95 (2007) 459-466.
[32] E. Karadağ, D. Saraydın, O. Güven, Sep. Sci. Technol. 30 (1995) 3747-3760.
[33] S.H. Choi, Y.C. Nho, Radiat. Phys. Chem. 57 (2000) 187-193.
[34] D. Saraydin, Y. Işikver, N. şahiner, Polym. Bull. 47 (2001) 81-89.
[35] N. Pekel, O. Güven, Colloids. Surf A. 212 (2003) 155-161.
[36] C. Özeroğlu, G. Keçeli, Radiochim. Acta .97 (2009) 709-717.
[37] C. Özeroğlu, G. Keçeli, J. Radional. Chem. 268 (2006) 211-219.
[38] T. F. Dossin, M. F. Reyniers, G. B. Marin, Appl. Catal. B 61 (2006) 35-45.
[39] W. Xie, H. Peng, L. Chen, Appl. Catal. A 300 (2006) 67-74.
[40] D. G. Cantrell, L. J. Gillie, A. F. Lee, K. Wilson, Appl. Catal. A 287 (2005) 183-190.
[41] S. Ramu, N. Lingaiah, B. L. A. Prabhavathi Devi, R. B. N. Prasad, I. Suryanarayana, P. S. Sai Prasad, Appl. Catal. A 276 (2004) 163-168.
[42] S. Gryglewicz, Bioresour. Technol. 70 (1999) 249-253.
[43] J. L. Ferracane, Dent. Mater. J. 27 (2011) 2938.
[44] M. K. Krusic, N. Milosavljevic, A. Debeljkovic, Ö. B. Üzüm, E. Karadağ, Water. Air. Soil. Pollut. (2012) 223: 4355-4368.
[45] D. Semitekolos, P. Kainourgios, C. Jones, A. Rana, E. P. Koumoulos, C. A. Chariitidis, Composite Part B. S 155 (2018) 237243.
[46] G. Pollaco, M. G. Cascone, L. Petarca, A. Peretti, Eur. Polym. J. 6 (2000) 2541-2544.
[47] R. Yavari, Y. D. Huang, S. J. Ahmadi, J. Radional. Nucl. Chem. 287 (2011) 293-401.
[48] A. Kadous, M. A. Didi, D. Villemin, Nucl. Chem. 288 (2011) 553-561.
[49]  C. Özeroğlu, M. Metin, J. Radioanal. Nucl. Chem. 292 (2012) 923-935.
[50] C. Özeroğlu, E. Doğan, G. Keçeli, J. Radioanal. Nucl. Chem. 289(2) (2011) 577-586.
[51] J. L. Martin, Polymer. 40 (1999) 3451-3462.
[52] M. A. Al Ghouti, D. A. Daana, J. Hazard. Mater. 393 (2020) 122383.
[53] D. Dolunay, E. Koyuncu, M. Okur,  Sep. Purif. Technol. 257 (2021) 117657.
[54] M. B. Desta, J. Thermodyn. 1155 (2013) 375830.
[55] I. Escring, I. Morell, Water. Air. Soil. Pollut. 105 (1998) 507-520.
[56] A. Sari, M. Tuzen, D. Citllak, M. Soylak, J. Hazard. Mater. 149(2) (2007) 283-291.
[57] S. Kunlu, A. K. Gupta, Colloid. Surf A. 273 (2006) 121-128.
[58] S. Lu, Z. Guo, C. Zhang, S. Zhang, J. Radioanal. Nucl. Chem. 287 (2011) 621-628.
[59] A. Nezamzadeh-Ejhieh, M. Kabiri-Samani, J. Hazard. Mater. 260 (2013) 339-349.
[60] M. Anari-Anaraki, A. Nezamzadeh-Ejhieh, J. Colloid. Interface. Sci, 440 (2015) 272-281.
[61] V. Puccia, M. J. Avena, J. Colloid. İnterface. 41 (2021) 100376.
[62] J. Romero-Gonzalez, J.R. Peralta-Videa, E. Rodriguez, S.L. Ramirez, J.L. Gardea-Torresdey, J. Chem. Thermodyn. 37 (2005) 343-347.
[63] K. V. Kumar, A. Kumaran, Biochem. Eng. J. 27 (2005) 83-93.
[64] Y. N. Mata, M. L. Blazquez, A. Ballester, F. Gonzalez, J. A. Munoz, J. Hazard. Mater. 178 (2010) 243-248.
[65] Y. H. Lia, Z. Dib, J. Ding, D. Wub, Z. Luanc, Y. Zhu, Water Res. 39 (2005) 605-609.
[66] M. Nasiri-Ardali, A. Nezamzade-Ejhieh, Mater. Chem. Phys. 240 (2020) 122142.
[67] W. S. Wan Ngah, M. A. K. M. Hanafiah, Biochem. Eng. J. 39 (2008) 521-530.
[68] M. M. Abd El-Latif, A. M. Ibrahim, Desalination. 6 (2009) 252-268.
[69] M. F. Ellkady, A. M. Ibrahim, M. M. Abd El-Latif, Desalination 278 (2011) 412-423.
[70] H. S. Hasan, M. F. Atallah, S. M. Yakout, Radioanal. Nucl. Chem. 286 (2010) 17-26.
[71] Y. S. Ho, G. McKay, Adsorp. Sci. Technol 20(8) (2002) 797-815.
[72] S.  M. Lee, A. P. Davis, 2001. Water. Res.  35(2) (2001) 534 – 540.
[73] A. M. Liu, K. Hidajat, S. Kawi, D.Y. Zhaob, Chem. Comm. 13 (2000) 1145–1146.