Recent Progress in Visible-Light Active (VLA) TiO2 Nano-Structures for Enhanced Photocatalytic Activity (PCA) and Antibacterial Properties: A Review

Document Type : Reviews

Authors

1 Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology (SLIIT), New Kandy Road, Malabe, Sri Lanka

2 Department of Chemistry, Faculty of Applied Science, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka

3 Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka

4 Center for Advanced Materials Research (CAMR), Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka

Abstract

The applications of photocatalytic nanomaterial technology received intense scientific focus with the advent of nanotechnology. Applications based on TiO2 nanoparticles have shown promise of photocatalytic efficiency among many semiconductor metal oxides. Titanium dioxide is utilized in many practical applications such as water and air purification, self-cleaning of surfaces, and energy production. The major drawback with TiO2 based photocatalysts is the wide band gap, which requires UV light to produce the electron-hole pairs. This review article focus on techniques/methods to eliminate band gap which reduces photocatalytic efficiency. Application of semiconductor photocatalytic techniques to degrade organic pollutants and their antimicrobial activity is discussed here using model systems. Synthetic and natural nanohybrids are available today and have varying characteristics as options. Recently developed natural mineral based nanohybrids is the new trend in photocatalytic applications. It appears that the removal efficiency of existed photocatalysts is higher than that of synthetic products. Natural nanohybrids carry the advantages of low costs, avoiding extensive synthesizing conditions in future photocatalytic applications.  

Graphical Abstract

Recent Progress in Visible-Light Active (VLA) TiO2 Nano-Structures for Enhanced Photocatalytic Activity (PCA) and Antibacterial Properties: A Review

Highlights

  • TiO2 nanoparticles shown promise as an efficient photocatalytic material in many practical applications like water and air purification, self-cleaning surfaces, and energy production.
  • The major drawback in TiO2 nps is the wide band gap, requires UV light to produce the electron-hole pairs and the potential of recombination of electron-hole pairs reduces the photocatalytic behavior.
  • The shortened band gap of TiO2 nps to absorb visible light is one of the most significant development in photocatalysts.
  • Scavenging energized electrons from the doped atom or molecule has eliminated electron-hole pair recombination and facilitates photon absorption from visible light, increasing TiO2's photoactivity.
  • Novel route of synthesizing doped TiO2 from natural ilmenite and rutile can be used as a novel photocatalytic agent under visible light.

Keywords


[1] V. Karunaratne, N. Kottegoda, A. De Alwis, J. Natl. Sci. Found. Sri Lanka 40 (2012) 3-8.
[2] Z.L. Wang, W. Wu, Angew. Chem. Int. Ed. 51 (2012) 11700–11721.
[3] N. Dasgupta, S. Ranjan, C. Ramalingam, Environ. Chem. Lett. 15 (2017) 591–605.
[4] T. Harper, IOP Publ. Ltd 14 (2003) 1-5.
[5] N. Castro-Alarcón, J.L. Herrera-Arizmendi, L.A. Marroquín-Carteño, I.P. Guzmán-Guzmán, A. Pérez-Centeno, M.Á. Santana-Aranda, Microbiol. Res. Int. 4 (2016) 55–62.
[6] M. Mandeh, M. Omidi, M. Rahaie, Biol. Trace Elem. Res. 150 (2012) 376–380.
[7] N. Kottegoda, C. Sandaruwan, P. Perera, N. Madusanka, V. Karunaratne, Nanosci. Nanotechnol.-Asia 4 (2015) 94–102.
[8] U.A. Rathnayake, T. Senapathi, C. Sandaruwan, S. Gunawardene, V. Karunaratne, N. Kottegoda, Chem. Cent. J. 12 (2018) 1-7.
[9] V.K. Wimalasiri, H.U. Weerathunga, N. Kottegoda, V. Karunaratne, J. Nanomater. 2017 (2017) 1–14.
[10]G.P. Gunaratne, N. Kottegoda, N. Madusanka, I. Munaweera, C. Sandaruwan, B.A.D. Madhushanka, U.A. Rathnayake, V. Karunaratne, Indian J. Agric. Sci. 86 (2016) 494–499.
[11]N. Kottegoda, C. Sandaruwan, G. Priyadarshana, A. Siriwardhana, U.A. Rathnayake, D.M. Berugoda Arachchige, A.R. Kumarasinghe, D. Dahanayake, V. Karunaratne, G.A.J. Amaratunga, ACS Nano 11 (2017) 1214–1221.
[12]N. Kottegoda, I. Munaweera, N. Madusanka, V. Karunaratne, Curr. Sci. 101 (2011) 73-78.
[13]R. Raliya, C. Avery, S. Chakrabarti, P. Biswas, Appl. Nanosci. 7 (2017) 253–259.
[14]R.S. Mulik, C. Bing, M. Ladouceur-Wodzak, I. Munaweera, R. Chopra, I.R. Corbin, Biomaterials 83 (2016) 257–268.
[15]I. Munaweera, J. Hong, A. D’Souza, K.J. Balkus, J. Porous Mater. 22 (2015) 1–10.
[16]A. Nezamzadeh-Ejhieh, S. Tavakoli-Ghinani, Comptes Rendus Chim. 17 (2014) 49–61.
[17]M. Nosuhi, A. Nezamzadeh-Ejhieh, Electrochimica Acta 223 (2017) 47–62.
[18]C. Madhusha, I. Munaweera, V. Karunaratne, N. Kottegoda, J. Agric. Food Chem. 68 (2020) 8962–8975.
[19]S. Fernando, N. Madusanka, N. Kottegoda, U.N. Ratnayake, in: Proceedings Int. Conf. Adv. Mater. Sci. Eng., Colombo, Sri Lanka, 2012,  1-7.
[20]D.B. Hamal, K.J. Klabunde, J. Colloid Interface Sci. 311 (2007) 514–522.
[21]Y. Zhang, J. Wan, Y. Ke, J. Hazard. Mater. 177 (2010) 750–754.
[22]G. Li, L. Chen, M.E. Graham, K.A. Gray, J. Mol. Catal. Chem. 275 (2007) 30–35.
[23]J.H. Carey, J. Lawrence, H.M. Tosine, Bull. Environ. Contam. Toxicol. 16 (1976) 697–701.
[24]A.M. Luís, M.C. Neves, M.H. Mendonça, O.C. Monteiro, Mater. Chem. Phys. 125 (2011) 20–25.
[25]M.B. Suwarnkar, R.S. Dhabbe, A.N. Kadam, K.M. Garadkar, Ceram. Int. 40 (2014) 5489–5496.
[26]J. You, Y. Guo, R. Guo, X. Liu, Chem. Eng. J. 373 (2019) 624–641.
[27]H. Derikvandi, A. Nezamzadeh-Ejhieh, J. Colloid Interface Sci. 490 (2017) 314–327.
[28]A. Nezamzadeh-Ejhieh, H. Zabihi-Mobarakeh, J. Ind. Eng. Chem. 20 (2014) 1421–1431.
[29]N.T. Sahrin, R. Nawaz, F.K. Chong, S.L. Lee, M.D.H. Wirzal, Environ. Technol. Innov. 22 (2021) 101418.
[30]T. Wang, Y. Li, W.-T. Wu, Y. Zhang, L. Wu, H. Chen, Appl. Surf. Sci. 537 (2021) 148025.
[31]S. Abdelnasser, R. Al Sakkaf, G. Palmisano, J. Environ. Chem. Eng. 9 (2021) 104873.
[32]H. Derikvandi, A. Nezamzadeh-Ejhieh, J. Hazard. Mater. 321 (2017) 629–638.
[33]M. Arunkumar, A.S. Nesaraj, Iran. J. Catal. 10 (2020) 235–245.
[34]A. Rostami-Vartooni, A. Moradi-Saadatmand, M. Bagherzadeh, Iran. J. Catal. 9 (2018) 27–35.
[35]M. Babaahamdi-Milani, A. Nezamzadeh-Ejhieh, J. Hazard. Mater. 318 (2016) 291–301.
[36]A. Rahmani-Aliabadi, A. Nezamzadeh-Ejhieh, J. Photochem. Photobiol. Chem. 357 (2018) 1–10.
[37]H. Derikvandi, A. Nezamzadeh-Ejhieh, Solid State Sci. 101 (2020) 106127.
[38]N. Omrani, A. Nezamzadeh-Ejhieh, J. Photochem. Photobiol. Chem. 389 (2020) 112223.
[39]J. Esmaili-Hafshejani, A. Nezamzadeh-Ejhieh, J. Hazard. Mater. 316 (2016) 194–203.
[40]S.A. Mirsalari, A. Nezamzadeh-Ejhieh, Sep. Purif. Technol. 250 (2020) 117235.
[41]S. Azimi, A. Nezamzadeh-Ejhieh, J. Mol. Catal. Chem. 408 (2015) 152–160.
[42]A.N. Ejhieh, M. Khorsandi, J. Hazard. Mater. 176 (2010) 629–637.
[43]F. Soleimani, A. Nezamzadeh-Ejhieh, J. Mater. Res. Technol. 9 (2020) 16237–16251.
[44]H. Derikvandi, M. Vosough, A. Nezamzadeh-Ejhieh, Int. J. Hydrog. Energy 46 (2021) 2049–2064.
[45]T.-F. Yeh, J.-M. Syu, C. Cheng, T.-H. Chang, H. Teng, Adv. Funct. Mater. 20 (2010) 2255–2262.
[46]D.J. Martin, G. Liu, S.J.A. Moniz, Y. Bi, A.M. Beale, J. Ye, J. Tang, Chem. Soc. Rev. 44 (2015) 7808–7828.
[47]W.S. Koe, J.W. Lee, W.C. Chong, Y.L. Pang, L.C. Sim, Environ. Sci. Pollut. Res. 27 (2020) 2522–2565.
[48]S. Gupta, M. Tripathi, Open Chem. 10 (2012) 279-284.
[49]C. Chen, W. Ma, J. Zhao, Chem. Soc. Rev. 39 (2010) 4206-4219.
[50]V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann, S.C. Pillai, J. Photochem. Photobiol. C Photochem. Rev. 25 (2015) 1–29.
[51]J. Maragatha, S. Rajendran, T. Endo, S. Karuppuchamy, J. Mater. Sci. Mater. Electron. 28 (2017) 5281–5287.
[52]N.T. Tung, D.N. Huyen, J. Nanomater. 2016 (2016) 1–7.
[53]R.S. Dariani, A. Esmaeili, A. Mortezaali, S. Dehghanpour, Optik 127 (2016) 7143–7154.
[54]S. Challagulla, R. Nagarjuna, R. Ganesan, S. Roy, Nano-Struct. Nano-Objects 12 (2017) 147–156.
[55]L. Spadaro, F. Arena, A. Palella, in: Photocatalytic Reduct. CO2 New Chall. Sol. Energy Exploit., Elsevier, 2018, 429–472.
[56]K. Pathakoti, S. Morrow, C. Han, M. Pelaez, X. He, D.D. Dionysiou, H.-M. Hwang, Environ. Sci. Technol. 47 (2013) 9988–9996.
[57]H. Zabihi-Mobarakeh, A. Nezamzadeh-Ejhieh, J. Ind. Eng. Chem. 26 (2015) 315–321.
[58]A. Nezamzadeh-Ejhieh, M. Bahrami, Desalination Water Treat. 55 (2015) 1096–1104.
[59]M. Balakrishnan, R. John, Iran. J. Catal. 10 (2020) 235–245.
[60]A. Besharati-Seidani, Iran. J. Catal. 6 (2016) 447–454.
[61]S. Dianat, Iran. J. Catal. 8 (2018) 121–132.
[62]N.E. Fard, R. Fazaeli, Iran. J. Catal. 8 (2018) 133–141.
[63]B. Khodadadi, Iran. J. Catal. 6 (2016) 305–311.
[64]A. Mahmoodi, S.M. Mehdinia, A. Rahmani, H. Nassehinia, Iran. J. Catal. 10 (2020) 23–32.
[65]J.T. Mehrabad, M. Partovi, F.A. Rad, R. Khalilnezhad, Iran. J. Catal. 9 (2018) 233–239.
[66]H.F. Moafi, Iran. J. Catal. 6 (2016) 281–292.
[67]H.R. Pouretedal, M. Fallahgar, F.S. Pourhasan, M. Nasiri, Iran. J. Catal. 7 (2017) 317–326.
[68]T. Seyedi-Chokanlou, S. Aghabeygi, N. Molahasani, F. Abrinaei, Iran. J. Catal. 11 (2021) 49–58.
[69]J. Prakash, Samriti, A. Kumar, H. Dai, B.C. Janegitz, V. Krishnan, H.C. Swart, S. Sun, Mater. Today Sustain. 13 (2021) 100066.
[70]D. Awfa, M. Ateia, M. Fujii, M.S. Johnson, C. Yoshimura, Water Res. 142 (2018) 26–45.
[71]M. Nemiwal, T.C. Zhang, D. Kumar, Sci. Total Environ. 767 (2021) 144896.
[72]S.M. Patil, S.A. Vanalakar, S.A. Sankpal, S.P. Deshmukh, S.D. Delekar, Results Chem. 3 (2021) 100102.
[73]J.C. Durán-Álvarez, V.A. Hernández-Morales, M. Rodríguez-Varela, D. Guerrero-Araque, D. Ramirez-Ortega, F. Castillón, P. Acevedo-Peña, R. Zanella, Catal. Today 341 (2020) 71–81.
[74]M.A. Behnajady, H. Eskandarloo, J. Nanosci. Nanotechnol. 13 (2013) 548–553.
[75]S. Hoang, S. Guo, C.B. Mullins, J. Phys. Chem. C 116 (2012) 23283–23290.
[76]W. Xie, R. Li, Q. Xu, Sci. Rep. 8 (2018) 8752.
[77]C. Hao, W. Wang, R. Zhang, B. Zou, H. Shi, Sol. Energy Mater. Sol. Cells 174 (2018) 132–139.
[78]J.S. Khaw, M. Curioni, P. Skeldon, C.R. Bowen, S.H. Cartmell, J. Nanotechnol. 2019 (2019) 1–13.
[79]J.-Y. Park, K.-I. Choi, J.-H. Lee, C.-H. Hwang, D.-Y. Choi, J.-W. Lee, Mater. Lett. 97 (2013) 64–66.
[80]A. Mayabadi, A. Pawbake, S. Rondiya, A. Rokade, R. Waykar, R. Kulkarni, A. Jadhavar, M. Kamble, B. Gabhale, V. Waman, V. Sathe, H. Pathan, S. Jadkar, Thin Solid Films 589 (2015) 493–502.
[81]Z. He, Q. Cai, H. Fang, G. Situ, J. Qiu, S. Song, J. Chen, J. Environ. Sci. 25 (2013) 2460–2468.
[82]Y.-Z. Chen, R.-J. Wu, L.-Y. Lin, W.-C. Chang, J. Power Sources 413 (2019) 384–390.
[83]D. T, V.R. K., V. M., B. K., C. B., R.R. K., Appl. Surf. Sci. 435 (2018) 216–224.
[84]W. Zhang, S. Chen, S. Yu, Y. Yin, J. Cryst. Growth 308 (2007) 122–129.
[85]J. Zhang, P. Zhou, J. Liu, J. Yu, Phys Chem Chem Phys 16 (2014) 20382–20386.
[86]P. Bouras, E. Stathatos, P. Lianos, Appl. Catal. B Environ. 73 (2007) 51–59.
[87]K. Fischer, A. Gawel, D. Rosen, M. Krause, A. Abdul Latif, J. Griebel, A. Prager, A. Schulze, Catalysts 7 (2017) 209.
[88]M. Monai, T. Montini, P. Fornasiero, Catalysts 7 (2017) 304.
[89]W. Hu, L. Li, G. Li, C. Tang, L. Sun, Cryst. Growth Des. 9 (2009) 3676–3682.
[90]Z. Li, S. Cong, Y. Xu, ACS Catal. 4 (2014) 3273–3280.
[91]R. Daghrir, P. Drogui, D. Robert, Ind. Eng. Chem. Res. 52 (2013) 3581–3599.
[92]L.V. Bora, R.K. Mewada, Renew. Sustain. Energy Rev. 76 (2017) 1393–1421.
[93]M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Raman, W.M.A.W. Daud, J. Environ. Manage. 198 (2017) 78–94.
[94]C. Liao, Y. Li, S.C. Tjong, Nanomaterials 10 (2020) 124.
[95]S. Mousavi-Mortazavi, A. Nezamzadeh-Ejhieh, Desalination Water Treat. 57 (2016) 10802–10814.
[96]X. Zhao, G. Zhang, Z. Zhang, Environ. Int. 136 (2020) 105453.
[97]S.I. Mogal, M. Mishra, V.G. Gandhi, R.J. Tayade, Mater. Sci. Forum 734 (2012) 364–378.
[98]Q. Zhang, Appl. Catal. B Environ. 26 (2000) 207–215.
[99]W. Zhang, Y. Chen, S. Yu, S. Chen, Y. Yin, Thin Solid Films 516 (2008) 4690–4694.
[100]N. Omrani, A. Nezamzadeh-Ejhieh, Sep. Purif. Technol. 235 (2020) 116228.
[101]M.I. Litter, in: P. Boule, D.W. Bahnemann, P.K.J. Robertson (Eds.), Environ. Photochem. Part II, Springer-Verlag, Berlin/Heidelberg, 2005, 325–366.
[102]R. Leary, A. Westwood, Carbon 49 (2011) 741–772.
[103]M.D. Hernández-Alonso, F. Fresno, S. Suárez, J.M. Coronado, Energy Environ. Sci. 2 (2009) 1231-1257.
[104]M. Mehrali-Afjani, A. Nezamzadeh-Ejhieh, H. Aghaei, Chem. Phys. Lett. 759 (2020) 137873.
[105]N. Omrani, A. Nezamzadeh-Ejhieh, J. Photochem. Photobiol. Chem. 400 (2020) 112726.
[106]N. Raeisi-Kheirabadi, A. Nezamzadeh-Ejhieh, Int. J. Hydrog. Energy 45 (2020) 33381–33395.
[107]S.A. Mirsalari, A. Nezamzadeh-Ejhieh, Mater. Sci. Semicond. Process. 122 (2021) 105455.
[108]P. Bezerra, R. Cavalcante, A. Garcia, H. Wender, M. Martines, G. Casagrande, J. Giménez, P. Marco, S. Oliveira, A. Machulek Jr., J. Braz. Chem. Soc. 28 (9) (2017) 1788-1802.
[109]H.A. Foster, I.B. Ditta, S. Varghese, A. Steele, Appl. Microbiol. Biotechnol. 90 (2011) 1847–1868.
[110]Y. Cho, W. Choi, J. Photochem. Photobiol. Chem. 148 (2002) 129–135.
[111]T.S. Natarajan, H.C. Bajaj, R.J. Tayade, J. Colloid Interface Sci. 433 (2014) 104–114.
[112]J. Fang, F. Shi, J. Bu, J. Ding, S. Xu, J. Bao, Y. Ma, Z. Jiang, W. Zhang, C. Gao, W. Huang, J. Phys. Chem. C 114 (2010) 7940–7948.
[113]S.I. Mogal, V.G. Gandhi, M. Mishra, S. Tripathi, T. Shripathi, P.A. Joshi, D.O. Shah, Ind. Eng. Chem. Res. 53 (2014) 5749–5758.
[114]S. Ghattavi, A. Nezamzadeh-Ejhieh, J. Mol. Liq. 322 (2021) 114563.
[115]S. Ghattavi, A. Nezamzadeh-Ejhieh, DESALINATION WATER Treat. 166 (2019) 92–104.
[116]S. Ghattavi, A. Nezamzadeh-Ejhieh, Compos. Part B Eng. 183 (2020) 107712.
[117]S. Ghattavi, A. Nezamzadeh-Ejhieh, Int. J. Hydrog. Energy 45 (2020) 24636–24656.
[118]R. Bacsa, J. Kiwi, T. Ohno, P. Albers, V. Nadtochenko, J. Phys. Chem. B 109 (2005) 5994–6003.
[119]E. Moctezuma, B. Zermeño, E. Zarazua, L.M. Torres-Martínez, R. García, Top. Catal. 54 (2011) 496–503.
[120]J. Choi, H. Park, M.R. Hoffmann, J. Phys. Chem. C 114 (2010) 783–792.
[121]M. Nasirian, C.F. Bustillo-Lecompte, M. Mehrvar, J. Environ. Manage. 196 (2017) 487–498.
[122]L.M. Santos, W.A. Machado, M.D. França, K.A. Borges, R.M. Paniago, A.O.T. Patrocinio, A.E.H. Machado, RSC Adv. 5 (2015) 103752–103759.
[123]A. Norouzi, A. Nezamzadeh-Ejhieh, Phys. B Condens. Matter 599 (2020) 412422.
[124]A.B. Ghomi, V. Ashayeri, Iran. J. Catal. 2 (2012) 135–140.
[125]S.D. Khairnar, M.R. Patil, V.S. Shrivastava, Iran. J. Catal. 8 (2018) 143–150.
[126]M.M.J. Sadiq, A.S. Nesaraj, Iran. J. Catal. 4 (2014) 219–226.
[127]M. Samandari, A.T. Manesh, S.A. Hosseini, S. Mansouri, Iran. J. Catal. 11 (2021) 175–180.
[128]A. Sobhani-Nasab, M. Eghbali-Arani, S.M. Hosseinpour-Mashkani, F. Ahmadi, M. Rahimi-Nasrabadi, V. Ameri, Iran. J. Catal. 10 (2018) 91–99.
[129]S. Jafari, A. Nezamzadeh-Ejhieh, J. Colloid Interface Sci. 490 (2017) 478–487.
[130]R.P. Cavalcante, R.F. Dantas, B. Bayarri, O. González, J. Giménez, S. Esplugas, A. Machulek, Catal. Today 252 (2015) 27–34.
[131]L. Gao, W. Gan, S. Xiao, X. Zhan, J. Li, RSC Adv. 5 (2015) 52985–52992.
[132]H. Derikvandi, A. Nezamzadeh-Ejhieh, J. Mol. Catal. Chem. 426 (2017) 158–169.
[133]M. Sankarammal, A. Thatheyus, D. Ramya, Open J. Water Pollut. Treat. 2014 (2014) 92–100.
[134]M. Fashola, V. Ngole-Jeme, O. Babalola, Int. J. Environ. Res. Public. Health 13 (2016) 1047.
[135]C. Cervantes, J. Campos-García, S. Devars, F. Gutiérrez-Corona, H. Loza-Tavera, J.C. Torres-Guzmán, R. Moreno-Sánchez, FEMS Microbiol. Rev. 25 (2001) 335–347.
[136]A. Malik, Environ. Int. 30 (2004) 261–278.
[137]A. Fathima, J.R. Rao, Arch. Microbiol. 200 (2018) 453–462.
[138]R. Kumar, D. Bhatia, R. Singh, S. Rani, N.R. Bishnoi, Int. Biodeterior. Biodegrad. 65 (2011) 1133–1139.
[139]N.S. Kumaran, A. Sundaramanicam, S. Bragadeeswaran, J. Appl. Sci. Res. 7 (2011) 1609–1615.
[140]A. Bhattacharya, A. Gupta, Environ. Sci. Pollut. Res. 20 (2013) 6628–6637.
[141]S.A. Jafari, S. Cheraghi, M. Mirbakhsh, R. Mirza, A. Maryamabadi, CLEAN - Soil Air Water 43 (2015) 118–126.
[142]S.M. Al-Garni, K.M. Ghanem, A.S. Ibrahim, Afr. J. Biotechnol. 9 (2010) 6413–6421.
[143]A.H. Caravelli, L. Giannuzzi, N.E. Zaritzky, J. Hazard. Mater. 156 (2008) 214–222.
[144]S. Murugavelh, K. Mohanty, Environ. Eng. Manag. J. 13 (2014) 281–287.
[145]S. Zhang, S.A. Crow, Appl. Environ. Microbiol. 67 (2001) 4030–4035.
[146]B Thippeswamy, C K Shivakumar, M Krishnappa, PubMed 33 (2012) 1063–1068.
[147]P.C. Mane, A.B. Bhosle, Int. J. Environ. Res. 6 (2012)571-576.
[148]W. Zhang, B. Xiong, L. Chen, K. Lin, X. Cui, H. Bi, M. Guo, W. Wang, Environ. Toxicol. Pharmacol. 36 (2013) 51–57.
[149]L. Regaldo, S. Gervasio, H. Troiani, A.M. Gagneten, J. Algal Biomass Util. 4 (2013) 59–66.
[150]R. Fagan, D.E. McCormack, D.D. Dionysiou, S.C. Pillai, Mater. Sci. Semicond. Process. 42 (2016) 2–14.
[151]I. Paspaltsis, K. Kotta, R. Lagoudaki, N. Grigoriadis, I. Poulios, T. Sklaviadis, J. Gen. Virol. 87 (2006) 3125–3130.
[152]R. Nakano, M. Hara, H. Ishiguro, Y. Yao, T. Ochiai, K. Nakata, T. Murakami, J. Kajioka, K. Sunada, K. Hashimoto, A. Fujishima, Y. Kubota, Catalysts 3 (2013) 310–323.
[153]D.J. Giannantonio, J.C. Kurth, K.E. Kurtis, P.A. Sobecky, Int. Biodeterior. 8 (2009) 252-259.
[154]M. Sökmen, S. Değerli, A. Aslan, Exp. Parasitol. 119 (2008) 44–48.
[155]E. Ruiz‐Hitzky, M. Darder, B. Wicklein, C. Ruiz‐Garcia, R. Martín‐Sampedro, G. del Real, P. Aranda, Adv. Healthc. Mater. 9 (2020) 2000979.
[156]H. Choi, M.G. Antoniou, M. Pelaez, Environ. Sci. Technol. 41 (2007) 7530-7535.
[157]X. He, A. Wang, P. Wu, S. Tang, Y. Zhang, L. Li, P. Ding, Sci. Total Environ. 743 (2020) 140694.
[158]J. Ananpattarachai, Y. Boonto, P. Kajitvichyanukul, Environ. Sci. Pollut. Res. 23 (2016) 4111–4119.
[159]Y. Wang, Y. Wu, H. Yang, X. Xue, Z. Liu, Vacuum 131 (2016) 58–64.
[160]N.K. Eswar, P.C. Ramamurthy, G. Madras, New J. Chem. 40 (2016) 3464–3475.
[161]T. Feng, J. Liang, Z. Ma, M. Li, M. Tong, Colloids Surf. B Biointerfaces 167 (2018) 275–283.
[162]C.-K. Huang, T. Wu, C.-W. Huang, C.-Y. Lai, M.-Y. Wu, Y.-W. Lin, Appl. Surf. Sci. 399 (2017) 10–19.
[163]J. Liang, F. Liu, J. Deng, M. Li, M. Tong, Water Res. 123 (2017) 632–641.
[164]J. Xu, Z. Wang, Y. Zhu, ACS Appl. Mater. Interfaces 9 (2017) 27727–27735.
[165]W. Bing, Z. Chen, H. Sun, P. Shi, N. Gao, J. Ren, X. Qu, Nano Res. 8 (2015) 1648–1658.
[166]Y. Li, Y. Li, S. Ma, P. Wang, Q. Hou, J. Han, S. Zhan, J. Hazard. Mater. 338 (2017) 33–46.
[167]N.S. Ahmad, N. Abdullah, F. Yasin, Bioresource 4 (2019) 8866–8878.
[168]K.-P. Yu, Y.-T. Huang, S.-C. Yang, J. Hazard. Mater. 261 (2013) 155–162.
[169]M. Miyauchi, K. Sunada, K. Hashimoto, Catalysts 10 (2020) 1093.
[170]P.-C. Maness, S. Smolinski, D.M. Blake, Z. Huang, E.J. Wolfrum, W.A. Jacoby, Appl. Environ. Microbiol. 65 (1999) 4094–4098.
[171]C. Guillard, T.-H. Bui, C. Felix, V. Moules, B. Lina, P. Lejeune, Comptes Rendus Chim. 11 (2008) 107–113.
[172]H. Takashima, Y. lida, K. Nakamura, Y. Kanno, in: 2006 IEEE Int. Conf. Syst. Man Cybern., IEEE, Taipei, Taiwan, 2006, pp. 1413–1418.
[173]Y. Kikuchi, K. Sunada, T. Iyoda, K. Hashimoto, A. Fujishima, J. Photochem. Photobiol. Chem. 106 (1997) 51–56.
[174]C. Hu, J. Guo, J. Qu, X. Hu, Langmuir 23 (2007) 4982–4987.
[175]T. Saito, T. Iwase, J. Horie, T. Morioka, J. Photochem. Photobiol. B 14 (1992) 369–379.
[176]W. Kangwansupamonkon, V. Lauruengtana, S. Surassmo, U. Ruktanonchai, Nanomedicine Nanotechnol. Biol. Med. 5 (2009) 240–249.
[177]K. Sunada, T. Watanabe, K. Hashimoto, J. Photochem. Photobiol. Chem. 156 (2003) 227–233.
[178]K. Sunada, Y. Kikuchi, K. Hashimoto, A. Fujishima, Environ. Sci. Technol. 32 (1998) 726–728.
[179]M. Suwalsky, C. Schneider, H.D. Mansilla, J. Kiwi, J. Photochem. Photobiol. B 78 (2005) 253–258.
[180]J. Kiwi, V. Nadtochenko, J. Phys. Chem. B 108 (2004) 17675–17684.
[181]V. Nadtochenko, N. Denisov, O. Sarkisov, D. Gumy, C. Pulgarin, J. Kiwi, J. Photochem. Photobiol. Chem. 181 (2006) 401–407.
[182]J. Kiwi, V. Nadtochenko, Langmuir 21 (2005) 4631–4641.
[183]J. Hou, L. Wang, C. Wang, S. Zhang, H. Liu, S. Li, X. Wang, J. Environ. Sci. 75 (2019) 40–53.
[184]Y. Chen, D.D. Dionysiou, Appl. Catal. B Environ. 62 (2006) 255–264.
[185]K.-J. Hwang, J.-W. Lee, W.-G. Shim, H.D. Jang, S.-I. Lee, S.-J. Yoo, Adv. Powder Technol. 23 (2012) 414–418.
[186]O.O. Kelyp, I.S. Petrik, V.S. Vorobets, N.P. Smirnova, V.S. G.Ya. Kolbasov, Chem. Phys. Surf. Technol. 4 (2015) 105–112.
[187]Y. Chen, A. Lin, F. Gan, Powder Technol. 167 (2006) 109–116.
[188]X. Zhang, X. Li, J. Wu, R. Yang, L. Tian, Z. Zhang, J. Sol-Gel Sci. Technol. 51 (2009) 1–3.
[189]R. Nandanwar, P. Singh, F.Z. Haque, Int. J. Chem. Phys. Sci. 3 (2014) 40–45.
[190]W. Nachit, S. Touhtouh, Z. Ramzi, M. Zbair, A. Eddiai, M. Rguiti, A. Bouchikhi, A. Hajjaji, K. Benkhouja, Mol. Cryst. Liq. Cryst. 627 (2016) 170–175.
[191]Z. Adriana, Recent Pat. Eng. 2 (2008) 157–164.
[192]A. Zielińska, E. Kowalska, J.W. Sobczak, I. Łącka, M. Gazda, B. Ohtani, J. Hupka, A. Zaleska, Sep. Purif. Technol. 72 (2010) 309–318.
[193]S. Esposito, Materials 12 (2019) 668.
[194]S.A. Yazid, Z.M. Rosli, J.M. Juoi, J. Mater. Res. Technol. 8 (2019) 1434–1439.
[195]C. Guillard, B. Beaugiraud, C. Dutriez, J.-M. Herrmann, H. Jaffrezic, N. Jaffrezic-Renault, M. Lacroix, Appl. Catal. B Environ. 39 (2002) 331–342.
[196]S.M. Lam, J.C. Sin, A.R. Mohamed, Recent Pat. Chem. Eng. 1 (2010) 209–219.
[197]A. Zyoud, A. Zu’bi, M.H.S. Helal, D. Park, G. Campet, H.S. Hilal, J. Environ. Health Sci. Eng. 13 (2015) 46.
[198]L. Hu, T. Yoko, H. Kozuka, S. Sakka, Thin Solid Films 219 (1992) 18–23.
[199]Y. Zhu, L. Zhang, C. Gao, L. Cao, J. Mater. Sci. 35 (2000) 4049–4054.
[200]I. El Saliby, Y. Okour, H.K. Shon, J. Kandasamy, W.E. Lee, J.-H. Kim, J. Ind. Eng. Chem. 18 (2012) 1033–1038.
[201]V. Štengl, S. Bakardjieva, J. Bludská, J. Mater. Sci. 46 (2011) 3523–3536.
[202]F. Chen, X. Yang, Q. Wu, Build. Environ. 44 (2009) 1088–1093.
[203]T. Ohno, K. Sarukawa, K. Tokieda, M. Matsumura, J. Catal. 203 (2001) 82–86.
[204]V. Štengl, V. Houšková, N. Murafa, S. Bakardjieva, Ceram. – Silikáty 54 (2010) 368–378.
[205]H. Mehranpour, M. Askari, M.S. Ghamsari, H. Farzalibeik, J. Nanomater. 2010 (2010) 1–5.
[206]D. Ganguli, Bull. Mater. Sci. 15 (1992) 421–430.
[207]S. Basu, P. Bhattacharyya, Sens. Lett. 9 (2011) 1575–1591.
[208]D.-S. Seo, J.-K. Lee, H. Kim, J. Cryst. Growth 229 (2001) 428–432.
[209]P.J. Kelly, R.D. Arnell, Vacuum 56 (2000) 159–172.
[210]X. Fu, S. Qutubuddin, Colloids Surf. Physicochem. Eng. Asp. 179 (2001) 65–70.
[211]G. Fu, P.S. Vary, C.-T. Lin, J. Phys. Chem. B 109 (2005) 8889–8898.
[212]R. Najjar, M. Shokri, S. Farsadi, Desalination Water Treat. 54 (2015) 2581–2591.
[213]Y. Wang, H. Cheng, Y. Hao, J. Ma, W. Li, S. Cai, Thin Solid Films 349 (1999) 120–125.
[214]A.M. Tripathi, R.G. Nair, S.K. Samdarshi, Sol. Energy Mater. Sol. Cells 94 (2010) 2379–2385.
[215]F. Wu, X. Li, Z. Wang, C. Xu, H. He, A. Qi, X. Yin, H. Guo, Hydrometallurgy 140 (2013) 82–88.
[216]T.S. Mackey, J. Met. 46 (1994) 59–64.
[217]T.A.I. Lasheen, Hydrometallurgy 76 (2005) 123–129.
[218]R. Razavi, S. Hosseini, M. Ranjbar, Iran. J. Chem. Chem. Eng 33 (2014) 29–36.
[219]R.K. Biswas, M.G.K. Mondal, Hydrometallurgy 17 (1987) 385–390.
[220]Z. Li, Z. Wang, G. Li, Powder Technol. 287 (2016) 256–263.
[221]E.M. Mahdi, M.H. Abdul Shukor, Y.M.S. Meor, P. Wilfred, J. Nano Res. 21 (2012) 71–76.
[222]D. Wibowo, Int. J. ChemTech Res. 9 (2016) 483-491.
[223]M.R. Lanyon, T. Lwin, R.R. Merritt, Hydrometallurgy 51 (1999) 299–323.
[224]W. Jonglertjunya, T. Rubcumintara, Asia-Pac. J. Chem. Eng. 8 (2013) 323–330.
[225]A.M. Amer, Hydrometallurgy 67 (2002) 125–133.
[226]F. Wu, X. Li, Z. Wang, L. Wu, H. Guo, X. Xiong, X. Zhang, X. Wang, Int. J. Miner. Process. 98 (2011) 106–112.
[227]L. Wu, X. Li, Z. Wang, H. Guo, X. Wang, F. Wu, J. Fang, Z. Wang, L. Li, J. Alloys Compd. 506 (2010) 271–278.
[228]X.-Y. Chuan, A.H. Lu, J. Chen, N. Li, Y.J. Guo, Mineral. Petrol. 93 (2008) 143–152.
[229]N.G. Kostova, M. Achimovičová, A. Eliyas, N. Velinov, V. Blaskov, I. Stambolova, E. Gock, Bulg. Chem. Commun. 47 (2015) 317–322.
[230]N.S. Rosli, C.A.C. Abdullah, R. Hazan, Results Phys. 11 (2018) 72–78.
[231]X. Wang, X. Li, Z. Wang, L. Wu, P. Yue, H. Guo, F. Wu, T. Ma, Powder Technol. 204 (2010) 198–202.
[232]T. Tao, Y. Chen, D. Zhou, H. Zhang, S. Liu, R. Amal, N. Sharma, A.M. Glushenkov, Chem. - Eur. J. 19 (2013) 1091–1096.
[233]Q.-H. Zhang, L. Gao, J.-K. Guo, Nanostructured Mater. 11 (1999) 1293–1300.
[234]J. Zhang, S. Yan, L. Fu, F. Wang, M. Yuan, G. Luo, Q. Xu, X. Wang, C. Li, Chin. J. Catal. 32 (2011) 983–991.
[235]S. Mourdikoudis, R.M. Pallares, N.T.K. Thanh, Nanoscale 10 (2018) 12871–12934.
[236]R. Nair, S. Paul, S.K. Samdarshi, Sol. Energy Mater. Sol. Cells 95 (2011) 1901–1907.
[237]M. Khairy, W. Zakaria, Egypt. J. Pet. 23 (2014) 419–426.
[238]      N.D. Israelsen, C. Hanson, E. Vargis, Sci. World J. 2015 (2015) 1–12.
[239]A. Mattsson, L. Österlund, J. Phys. Chem. C 114 (2010) 14121–14132.
[240]Q. Yin, J. Xiang, X. Wang, X. Guo, T. Zhang, J. Exp. Nanosci. 11 (2016) 1127–1137.
[241]A. Mudhafar Mohammed, M. Sebek, C. Kreyenschulte, H. Lund, J. Rabeah, P. Langer, J. Strunk, N. Steinfeldt, J. Sol-Gel Sci. Technol. 91 (2019) 539–551.
[242]M. Ahamed, M.A.M. Khan, M.J. Akhtar, H.A. Alhadlaq, A. Alshamsan, Sci. Rep. 7 (2017) 17662.
[243]M. Chi, X. Sun, A. Sujan, Z. Davis, B.J. Tatarchuk, Fuel 238 (2019) 454–461.
[244]J.H. Lee, Y.S. Yang, J. Eur. Ceram. Soc. 25 (2005) 3573–3578.
[245]Y.-C. Lin, S.-H. Liu, H.-R. Syu, T.-H. Ho, Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 95 (2012) 300–304.
[246]J. Chang, R.D. Taylor, R.A. Davidson, A. Sharmah, T. Guo, J. Phys. Chem. A 120 (2016) 2815–2823.
[247]C.P. Kumar, N.O. Gopal, T.C. Wang, M.-S. Wong, S.C. Ke, J. Phys. Chem. B 110 (2006) 5223–5229.
[248]Alamgir, W. Khan, S. Ahmad, N. Ahammed, A.H. Naqvi, in: Shimla, India, 2015, p. 080001.
[249]S. Wang, Y. Gao, Y. Qi, A. Li, F. Fan, C. Li, J. Catal. 354 (2017) 250–257.
[250]A. Miyoshi, J.J.M. Vequizo, S. Nishioka, Y. Kato, M. Yamamoto, S. Yamashita, T. Yokoi, A. Iwase, S. Nozawa, A. Yamakata, T. Yoshida, K. Kimoto, A. Kudo, K. Maeda, Sustain. Energy Fuels 2 (2018) 2025–2035.
[251]L. Sinatra, A.P. LaGrow, W. Peng, A.R. Kirmani, A. Amassian, H. Idriss, O.M. Bakr, J. Catal. 322 (2015) 109–117.
[252]D.S. Shinde, P.D. Bhange, S.S. Arbuj, J.-Y. Kim, J.-H. Bae, K.-W. Nam, S.N. Tayade, D.S. Bhange, Int. J. Hydrog. Energy 45 (2020) 8605–8617.
[253]Y.M. Hunge, M.A. Mahadik, A.V. Moholkar, C.H. Bhosale, Ultrason. Sonochem. 35 (2017) 233–242.
[254]P. Niu, G. Wu, P. Chen, H. Zheng, Q. Cao, H. Jiang, Front. Chem. 8 (2020) 172.
[255]N. Raghavan, S. Thangavel, Y. Sivalingam, G. Venugopal, Appl. Surf. Sci. 449 (2018) 712–718.
[256]M.S. Kumar, K.Y. Yasoda, D. Kumaresan, N.K. Kothurkar, S.K. Batabyal, Mater. Res. Express 5 (2018) 075502.
[257]M. Pawar, S. Topcu Sendoğdular, P. Gouma, J. Nanomater. 2018 (2018) 1–13.
[258]H. Chu, W. Lei, X. Liu, J. Li, W. Zheng, G. Zhu, C. Li, L. Pan, C. Sun, Appl. Catal. Gen. 521 (2016) 19–25.
[259]W. Sangchay, J. Nanotechnol. 2017 (2017) 1–7.
[260]M.F. La Russa, A. Macchia, S.A. Ruffolo, F. De Leo, M. Barberio, P. Barone, G.M. Crisci, C. Urzì, Int. Biodeterior. Biodegrad. 96 (2014) 87–96.
[261]G. Li, B. Wang, W.Q. Xu, Y. Han, Q. Sun, Dyes Pigments 155 (2018) 265–275.
[262]M.H.H. Mahmoud, A.A. Ismail, M.M.S. Sanad, Chem. Eng. J. 187 (2012) 96–103.
[263]Y.R. Smith, K. Joseph Antony Raj, V. (Ravi) Subramanian, B. Viswanathan, Colloids Surf. Physicochem. Eng. Asp. 367 (2010) 140–147.
[264]N.T. Lan, V.H. Anh, H.D. An, N.P. Hung, D.N. Nhiem, B. Van Thang, P.K. Lieu, D.Q. Khieu, J. Nanomater. 2020 (2020) 1–14.
[265]J.A. Torres-Luna, N.R. Sanabria, J.G. Carriazo, Powder Technol. 302 (2016) 254–260.
[266]S. Zhao, D. Kang, Z. Yang, Y. Huang, Appl. Surf. Sci. 488 (2019) 522–530.
[267]R.-B. Lee, J.-C. Juan, C.-W. Lai, K.-M. Lee, Chin. Chem. Lett. 28 (2017) 1613–1618.
[268]P. García-Muñoz, G. Pliego, J.A. Zazo, B. Barbero, A. Bahamonde, J.A. Casas, Chem. Eng. J. 318 (2017) 89–94.
[269]D. Xia, H. He, H. Liu, Y. Wang, Q. Zhang, Y. Li, A. Lu, C. He, P.K. Wong, Appl. Catal. B Environ. 238 (2018) 70–81.
[270]S. Kalantari, G. Emtiazi, J. Nanosci. Curr. Res. 01 (2016).