Porous and Bifunctional ZnO-Hydroxyapatite Nanostructure for Photocatalytic Degradation of Paracetamol and Methylene Blue in Water

Document Type : Articles


1 Laboratory of Applied Chemistry of Materials, Faculty of Sciences, University of Mohammed V in Rabat, Av. Ibn Batouta, BP. 1014 Rabat, Morocco.

2 Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS-UMR7515, Université de Lorraine, 12 rue Victor Demange, 57500, Saint-Avold, France.

3 Department of Chemistry, Queen’s University, Kingston, ON K7L 3N6, Canada


Porous ZnO-hydroxyapatite nanocomposite was prepared by dissolution of a rock phosphate ore in an acidic medium followed by alkaline precipitation. Its photocatalytic activity was assessed for the degradation of paracetamol as one of the most commonly prescribed pharmaceutical drugs and methylene blue as dye model. Thanks to its good porosity, the 40ZnHAp nanocomposite adsorbed the selected pollutants better than the individual ZnO and HAp phases. 40ZnHAp calcined at 500° completely degrades the studied pollutants faster than ZnO, although a longer illumination time is required for the degradation of paracetamol. The low-cost 40ZnHAp nanomaterial can be considered as a potential photocatalyst for wastewater treatment due to its high porosity, which facilitates the entrapment of initial pollutants and/or by-products. It leads to a complete mineralization, consequently yielding healthy discharged water.

Graphical Abstract

Porous and Bifunctional ZnO-Hydroxyapatite Nanostructure for Photocatalytic Degradation of Paracetamol and Methylene Blue in Water


-Nanocomposite ZnO-HAp has been successfully prepared from rock phosphate with easy one-step synthesis

- The porosity and surface charge of ZnO-HAp were good parameters for fixing the toxic organic chemical.

- Good photocatalytic efficiency of ZnO / HAp for the degradation of paracetamol and methylene blue without by-products in water.


[1] T. Heberer, K. Reddersen, A. Mechlinski, From municipal sewage to drinking water: fate and removal of pharmaceutical residues in the aquatic environment in urban areas, Water Sci. Technol. 46 (2002) 81-88.
[2] A. Jelic, M. Gros, A. Ginebreda, R. Cespedes-Sánchez, F. Ventura, M. Petrovic, D. Barcelo, Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment, Water Res. 45 (2011) 1165-1176.
[3] D. Simazaki, R. Kubota, T. Suzuki, M. Akiba, T. Nishimura, and S. Kunikane, Occurrence of selected pharmaceuticals at drinking water purification plants in Japan and implications for human health”, Water Res. 76 (2015) 187–200.
[4] B. Neppolian, S. Sakthivel, B. Arabindoo, M. Palanichamy, and V. Murugesan, Degradation of textile dye by solar light using TiO2 and ZnO photocatalysts”, J. Environ. Sci. Health part A 34 (1999) 1829–1838.
[5] M. Bordbara, Z. Saybanb, A. Yeganeh-Faalb, B.Khodadad, Incorporation of Pb2+, Fe2+ and Cd2+ ions in ZnO nanocatalyst for photocatalytic activity, Iran. J. Catal.  8 (2018) 113-120.
[6] H. Bouyarmane, C. El Bekkali, J. Labrag, I. Es-saidi, O. Bouhnik, H. Abdelmoumen, A. Laghzizil, J-M Nunzi, D. Robert, Photocatalytic degradation of emerging antibiotic pollutants in waters by TiO2/Hydroxyapatite nanocomposite materials, Surf. Interfaces 24 (2021) 101155.
[7] K. A. Isaia, V. Shankar Shrivastav, Photocatalytic degradation of methyl orange using ZnO and Fe doped ZnO: A comparative study, Iran. J. Catal. 9, 2019, 259-268
[8] L. Yang, L.E. Yu, M.B. Ray, Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis, Water Res. 42 (2018) 3480.
[9] M. Cantarella, A. D. Mauro, A. Gulino, L. Spitaleri, G. Nicotra, V. Privitera, G. Impellizzeri, Selective photodegradation of paracetamol by molecularly imprinted ZnO nanonuts, Appl. Catal. B: Environ. 238 (2018) 509-517
[10] S. Lozano-Morales, G. Morales, M. L. Zavala, A. Arce-Sarria, F. Machuca-Martínez, Photocatalytic treatment of paracetamol using TiO2 nanotubes: Effect of pH, Processes 7 (2019) 319.
[11] A. Nezamzadeh Ejhieh, M. Khorsandi, Photodecolorization of Eriochrome Black T using NiS-P zeolite as a heterogeneous catalyst, J. Hazard. Mater. 176 (2010) 629–637
[12] H. Zabihi-Mobarakeh, A. Nezamzadeh-Ejhieh, Application of supported TiO2 onto Iranian clinoptilolite nanoparticles in the photodegradation of mixture of aniline and 2, 4-dinitroaniline aqueous solution, J. Industrial Eng. Chem., 26 (2015) 315-321.
[13] J. Liu, Y. Wang, Y. Peng, J. Ma, A. Wang, A review on bidirectional analogies between the photocatalysis and antibacterial properties of ZnO, J. Alloys Compd. 783 (2019) 898-918.
[14] D. Blažeka, J. Car, N. Klobucar , A. Jurov, J. Zavašnik , A. Jagodar, E. Kovacevic, N. Krstulovi, Photodegradation of methylene blue and rhodamine B using laser-synthesized ZnO nanoparticles, Materials 13 (2020) 4357.
[15] C. El Bekkali, H. Bouyarmane, S. Laasri, A. Laghzizil, A. Saoiabi, Effects of metal oxide catalysts on the photodegradation of antibiotics effluent, Iran. J. Catal. 8(2018) 241–247.
[16] A. Manohar, J. Park, D. D. Geleta, C. Krishnamoorthi, R. Thangam, H. Kang, J. Lee, Synthesis and characterization of ZnO nanoparticles for photocatalysis, antibacterial and cytotoxicity in kidney cancer (A498) cell lines, J. Alloys Compounds 874 (2021) 159868.
[17] H. Zheng, D. Wu, Y. Wang, X. Liu, P. Gao, W. Liu, J. Wen, E.V. Rebrov, One-step synthesis of ZIF-8/ZnO composites based on coordination defect strategy and its derivatives for photocatalysis, J. Alloys Compounds 838 (2020) 155219.
[18] M. Tobajas, C. Belver, J.J. Rodriguez, Degradation of emerging pollutants in water under solar irradiation using novel TiO2-ZnO/clay nanoarchitectures, Chem. Eng. J. 309 (2017) 596-606.
[19] H. Zheng, D. Wu, Y. Wang, X. Liu, P. Gao, W. Liu, J. Wen, E. V. Rebrov, One-step synthesis of ZIF-8/ZnO composites based on coordination defect strategy and its derivatives for photocatalysis, J. Alloys Compounds 838 (2020) 155219.
[20] K. Pathakoti, M. Manubolum; H.M. Hwang, Nanotechnology applications for environmental industry. In Handbook of Nanomaterials for Industrial Applications; Elsevier: Amsterdam, The Netherlands, 2018; Chapter 48; 894-907.
[21] C. El Bekkali, H. Bouyarmane, M. El Karbane, S. Masse, A. Saoiabi, T. Coradin, A. Laghzizil, Zinc oxide-hydroxyapatite nanocomposite photocatalysts for the degradation of ciprofloxacin and ofloxacin antibiotics. Colloids Surf. A 539 (2018) 364-370.
[22] S. El Asri, A. Laghzizil, A. Saoiabi, A. Alaoui, K. El Abassi, R. M’Hamdi, T. Coradin, A novel process for the fabrication of nanoporousapatites from Moroccan phosphate rock, Colloids Surf. A350 (2009) 73-78.
[23] B. Divband, A. Jodaie, M. Khatmian,  Enhancement of photocatalytic degradation of 4-nitrophenol by integrating Ag nanoparticles with ZnO/HZSM-5 nanocomposite, Iran. J. Catal.  9 (2019) 63-70.
[24] C. El Bekkali, H. Bouyarmane, S. Saoiabi, M. El Karban, A. Rami, A. Saoiabi, M. Boujtita, A. Laghzizil, Low-cost composites based on porous titania–apatite surfaces for the removal of patent blue V from water: Effect of chemical structure of dye, J. Adv. Research 7 (2016) 1009-1017.
[25] S. Majumder, S. Chatterjee, P. Basnet, J. Mukherjee, ZnO based nanomaterials for photocatalytic degradation of aqueous pharmaceutical waste solutions - A contemporary review, Environ. Nanotech., Monitor. Manag. 14 (2020) 100386.
[26] N. V. Kaneva, L. K. Krasteva, A.S. Bojinova, K. I. Papazova, D. Tz. Dimitrov, Photocatalytic Oxidation of Paracetamol and Chloramphenicol by ZnO Nanowires. Bulgarian Chem. Comm. 45 (2013) 110-114.
[27] E.S. Elmolla, M. Chaudhuri, Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process, J. Hazard. Mater. 173 (2010) 445-449.