A simple synthetic technique to produce ZnO/Fe2O3/Fe3O4 nanostructures and application as a photocatalyst

Document Type : Articles

Authors

1 General Education Center, Army Academy, Chungli, Taiwan ROC

2 Department of Chemical Engineering, Army Academy, Chungli, Taiwan ROC

Abstract

In this study, a simple technique was used for synthesizing one-dimensional ZnO/Fe2O3/Fe3O4 nanostructures (NSs) through heat treatment under vacuum by using a magnetic field at a temperature of 200 °C for 1 h. The photocatalytic effect of the NSs were studied by decomposing methyl orange (MO) dye (5 mg/L, pH = 8.1) under ultraviolet illumination. The experimental results indicated that a 33-mg/L ZnO/Fe2O3/Fe3O4 NS-containing film on glass could reduce the MO concentration by 37% in 100 min, and the synthesized ZnO/Fe2O3/Fe3O4 NS-containing films could be reused to degrade MO solution. Moreover, 0.1 g/L of ZnO/Fe2O3/Fe3O4 NS-containing powder exhibited an excellent photocatalytic effect and reduced the MO concentration by almost 90% in 100 min.

Graphical Abstract

A simple synthetic technique to produce ZnO/Fe2O3/Fe3O4 nanostructures and application as a photocatalyst

Highlights

  • We report a simple, rapid, and low-temperature technique to synthesize ZnO/Fe2O3/Fe3O4 nanostructures using a magnetic field.
  • ZnO/Fe2O3/Fe3O4 nanostructures show superior photocatalytic activity.
  • Various metal-oxide nanostructures could potentially be grown using this simple technique.

Keywords


  1. K.M. Alosfur, M.H.H. Jumali, S. Radiman, N.J. Ridha, MA. Yarmo, A.A. Umar, Nanoscale Res. Lett. 8 (2013) 346.
  2. I. Franch, J. A. Ayllón, J. Peral and X. Domènech, Appl. Catal. B: Environ. 50 (2004) 89-99.
  3. Senobari, A. Nezamzadeh-Ejhieh, Acta Part A: Molecul. Biomolecul. Spect. 196 (2018) 334–343.
  4. H. Lin and R. S. Juang, J. Environ. Manage. 90 (2009) 1336-1349.
  5. B. Wang and Y.L. Peng, Chem. Eng. J. 156 (2010) 11-24.
  6. Patil, G. Gaikwad, D.R. Patil and J. Naik, Bull. Mater. Sci. 39 (2016) 655-665.
  7. C. Lu, C.C. Chang and C.S. Lu, J. Taiwan Inst. Chem. Eng. 45 (2014) 1015-1024.
  8. Hafizuddin, H. Jumali, F.K.M. Alosfur, S. Radiman, N.J. Ridha, M.A. Yarmo, A.A. Umar, Materi. Sci. in Semi. Proces. 25 (2014) 207-210.
  9. Phanichphant, A. Nakaruk, K. Chansaenpak, D. Channei, Scientific Rep. 9 (2019) 16091.
  10. Mclaren, T. Valdes-Solis, G.Q. Li and S.C. Tsang, J. Am. Chem. Soc. 131 (2009) 12540-12541.
  11. Hassena, Mod. Chem. Appl. 4 (2016) 1000176.
  12. D. Yang, R.X. Yan, M. Fardy, Nano Lett. 10 (2010) 1529-1536.
  13. A. Subhan, A.M.M. Fahim, P.C. Saha, M.M. Rahman, K. Begum, A.K. Azad, Nano-Str. & Nano-Obj. 10 (2017) 30-41.
  14. Zhou, J.Z. Wen, P. Zhao and W.A. Anderson, Nanomaterials 7 (2017) 9.
  15. Xia, Y. Meng, X. Zhou, J. Xue, G. Pan, Z. Ni, Appl. Cata. Env. 187 (2016) 122-133.
  16. Vayssieres, Adv. Mater. 15 (2003) 464-466.
  17. Q. Xiong, X.H. Xia, J.P. Tu, J. Chen, Y.Q. Zhang, D. Zhou, C.D. Gu, X.L. Wang, J. Powe. Sour. 240 (2013) 344-350.
  18. L. Chueh, M.W. Lai, J.Q. Liang, L.J. Chou, Z.L. Wang, Adv. Func. Mate. 16 (2006) 2243-2251.
  19. Y. Li, C.Y. Lee, T.Y. Tseng, J. Crysta. Grow .247 (2003) 357-362.
  20. Y. Park, Y.S. Yen, Y.S. Hong, H. Oh, J.J. Kim, S.S. Kim, Composites: Part B 37 (2006) 408-412.
  21. B.A. Kadhim, N.J. Ridha, F.K.M. Alosfur, N.M Umran, R. Madlol, K. Tahir and R.T. Ahmed, J. Physics: Conf. Series 1032 (2018) 012039.
  22. T. Chiou, W.Y. Wu, J.M. Ting, Diam. Relat. Mater. 12 (2003) 1841-1844.
  23. J. Kuo, C.N. Lin, C.L. Kuo, M.H. Huang, Chem. Mater. 19 (2007) 5143-5147.
  24. Li, Q. Wang, Z. Chen,Q. Ma, M. An, Nanomaterials 9 (2019) 846.
  25. F. Hsu, T.K. Chung, M. Chang, H.J. Chen, J. Mater. Sci. Technol. 29 (2013) 893-897.
  26. F. Hsu, M. Chang, Mater. Chem. Phys. 135 (2012) 112-116.
  27. Zhang, N. Li, Oxidation mechanism of steels in liquid–lead alloys, Oxidation of Metals 63 (2005) 353-381.
  28. Ohring, The materials science of thin films, 2nd Edn., Academic Press, San Diego, 2002. pp. 357-415.
  29. Chang, N.F. Hsu, Chin. J. Chem. Phys. 24 (2011) 109-114.
  30. Jia, L. Gao, J. Phys. Chem. C 112 (2008) 666-671.
  31. Derikvandi, A. Nezamzadeh-Ejhieh, J. Molecul. Catal. A: Chem. 426 (2017) 158–169.
  32. Zhang, L. Wang, G. Zhou, Rev. Adv. Mater. Sci. 10 (2005) 69-72.
  33. Behera, B.S. Acharya, J. Lumi. 128 (2008) 1577-1586.
  34. D. Gao, X.M. Li, W.D. Yu, J. Sol. State. Chem. 177 (2004) 3830-3834.
  35. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79 (1996) 7983-7990.
  36. L. Wu, G.G. Siu, C.L. Fu, H.C. Ong, Appl. Phys. Lett. 78 (2001) 2285-2287.
  37. Qi, T. Zhang, Q. Yu, R. Wang, Y. Zeng, L. Liu, H. Yang, Sens. Actuat B: Chem. 133 (2008) 638-643.
  38. Al-Sabahi, T. Bora, M. Al-Abri and J. Dutta, Materials 9 (2016) 238.
  39. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, R. Liu, Sci. Rep. 4 (2014) 4596.
  40. Bhatia and N.Verma, Mater. Res. Bull. 95 (2017) 468-476.
  41. M. Meng, X.P. Song, Z.Q. Sun, Vacuum 83 (2009) 1147-1151.
  42. F. Hsu, M. Chang, K.T. Hsu, Mater. Sci. in Semi. Proce. 21 (2014) 200-205.
  43. Liu, L. Sun, J. Wu, T. Fang, R.Cai, A. Wei, Mater.Sci. and Eng.: B 194 (2015) 9-13.
  44. C. Sin, S.Q. Tan, J.A. Quek, S.M. Lam, A.R. Mohamed, Mater. Lett.228, (2018) 207-211.
  45. Nezamzadeh-Ejhieh, S. Hushmandrad, Appl.Catal.A: Gene. 388 (2010) 149-159.
  46. Ghattavi, A. Nezamzadeh-Ejhieh, Inter. J. Hydro. Ene.. 45 (2020) 24636-24656.
  47. Manikandan, K.R. Murali, R. John, Iran. J. of Catal. 11(1) (2021) 1-11.
  48. Mehrali-Afjania, A.Nezamzadeh-Ejhieha, H. Aghaei, Chem. Phys. Lett. 759 (2020) 137873.