Synthesis and Characterization ZnO-Fe2O3 Nanocomposite with Thermal Plasma Method

Document Type : Articles

Authors

Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

In the present paper, a novel thermal plasma method is proposed to synthesize ZnO-Fe2O3 nanocomposite, with different percentages of iron, namely 3, 5, and 7%. This method is an efficient feasibility of the Zno-Fe2O3 nanocomposite synthesis. The nanocomposites are synthesized by homemade direct current (DC) plasma torch. They are analyzed by different methods. The bandgap is determined by diffuse reflectance spectroscopy (DRS). The photocatalytic performance of Zno-Fe2O3 is evaluated. The results show that the structure of nanoparticles is spherical, which is more favored in the industry. Also, the particle size distribution is uniform. The average size of nanoparticle crystals increases with increasing iron content. Despite the formation of nanocomposites, due to the lack of support for nanoparticles, the results of photodegradation are not satisfactory.

Graphical Abstract

Synthesis and Characterization ZnO-Fe2O3 Nanocomposite with Thermal Plasma Method

Highlights

  • Production of nanocomposites by thermal plasma technique
  • Production of spherical and rod nanocomposites
  • Investigation of photocatalytic properties of nanocomposites
  • By including iron, the size of nanostructures is significantly reduced.
  • By adding iron to zinc, the structure of nanoparticles changes from rod to spherical which is more favored in the industry

Keywords


[1] M.I. Boulos, P. Fauchais, E. Pfender, Thermal plasmas : fundamentals and applications, (n.d.), first ed. Springer 2013.
[2]           E. Pfender, Plasma Process. 19 (1999) 1–31.
[3]           M. Gharaeinia, S. Saviz, A.H. Sari, J. Theor. Appl. Phys. 141 (2019) 1–10.
[4]           S. Khandanjou, M. Ghoranneviss, S. Saviz, Results in physics 7 (2017) 1440-1445.
[5]           S. Khandanjou, M. Ghoranneviss, S. Saviz, M.R. Afshar, Chinese Phys. B. 27 (2018) 028104.
[6]           M.I. Boulos, Pure Appl. Chem. 57 (1985) 1321–1352.
[7]           J. Heberlein, Pure Appl. Chem. 74 (2002) 327–335.
[8]           D. Vollath, J. Nanoparticle Res. 10 (2008) 39–57.
[9]           J. L. H. Chau, M.K. Hsu, C.C. Hsieh, and C.C. Kao, Mater. Lett. 59 (2005) 905-908.
[10]         G. Vissokov, I. Grancharov, T. Tsvetanov, Plasma Sci. Technol. 5 (2003) 2039.
[11]         M. Filkov, and A. Kolesnikov, Journal of Nanoscience (2016) 2016.
[12]     Lee, Y.I., Joung, J.W., Choi, J.R. and Lee, K.J., Samsung Electro Mechanics Co Ltd, U.S. Patent Application (2009) 12/081,274.
[13]         S. Ohno, J. Japan. Inst. Metals, 48 (1984) 640-646.
[14]         H. Bönnemann, W. Brijoux, R. Brinkmann, R. Fretzen, T. Joussen, R. Köppler, B. Korall, P. Neiteler, and J. Richter, J. Mol. Catal. 86 (1994) 129-177.
[15]         Tadafumi  Adschiri, and Yukiya  Hakuta, K. Arai, Ind. Eng. Chem. Res. 39 (2000) 4901–4907.
[16]         S.H. Lee, S.M. Oh, D.W. Park, Mater. Sci. Eng. C. 27 (2007) 1286–1290.
[17]         S. Kumar, V. Selvarajan, P.V.A. Padmanabhan, K.P. Sreekumar, J. Mater. Process. Technol. 176 (2006) 87–94.
[18]         G. Masoumeh, S. Shahrooz, G. Mahmood, S.E. Ahmad, J. Theor. Appl. Phys. (2018) 122. 12 (2018) 85–91.
[19]         A.J. Shnoudeh, I. Hamad, R.W. Abdo, L. Qadumii, A.Y. Jaber, H.S. Surchi, and S.Z. Alkelany, In Biomaterials and bionanotechnology (2019) 527-612.
[20]         P. Buffat, J.-P. Borel, Phys. Rev. A. 13 (1976) 2287.
[21]         J.H. Seo, D.U. Kim, J.S. Nam, S.H. Hong, S.B. Sohn, S.M. Song, J. Am. Ceram. Soc. 90 (2007) 1717–1722.
[22]         D. Harbec, F. Gitzhofer, A., Powder Technol. 214 (2011) 356–364.
[23]         P. Buchner, H. Schubert, J. Uhlenbusch, M. Weiss, J. Therm. Spray Technol. 104 (2001) 666–672.
[24]         H. Nishiyama, M. Onodera, J. Igawa, T. Nakajima, JTST. 18 (2009) 593–599.
[25]         B. Bora, N. Aomoa, R.K. Bordoloi, D.N. Srivastava, H. Bhuyan, A.K. Das, M. Kakati, Curr. Appl. Phys. 12 (2012) 880–884.
[26]         Y.H. Hu, Catal. Today. 148 (2009) 206–211.
[27]         J.H. Seo, M.Y. Lee, J.S. Kim, Surf. Coatings Technol. 228 (2013) 91-96.
[28]         H. Zea, C.K. Chen, K. Lester, A. Phillips, A. Datye, I. Fonseca, J. Phillips, 89(1-2) (2004) 237-244.
[29]         V. Srikant, D.R. Clarke, J. Appl. Phys. 83 (1998) 5447-5451.
[30]         Z. Cao, Y. Wang, Z. Li, N. Yu, Nanoscale Res. Lett. 11 (2016) 1-6.
[31]         P. Sathishkumar, Z. Li, R. Govindan, R. Jayakumar, C. Wang, F. Long Gu, Appl. Surf. Sci. 536 (2021) 147741.
[32]         S. Gautam, H. Agrawal, M. Thakur, A. Akbari, H. Sharda, R. Kaur, M. Amini, J. Environ. Chem. Eng. 8 (2020) 103726.
[33]         I. Ahmad, M. Shoaib Akhtar, E. Ahmed, M. Ahmad, V. Keller, W. Qamar Khan, N.R. Khalid, Sep. Purif. Technol. 237 (2020) 116328.
[34]         K.E. Salem, A.M. Mokhtar, I. Soliman, M. Ramadan, B.S. Shaheen, N.K. Allam, Int. J. Hydrogen Energy. 46 (2021) 209-220.
[35]         N.A. Putri, V. Fauzia, S. Iwan, L. Roza, A.A. Umar, S. Budi, Appl. Surf. Sci. 439 (2018) 285-297.
[36]         T.S. Ko, S. Yang, H.C. Hsu, C.P. Chu, H.F. Lin, S.C. Liao, T.C. Lu, H.C. Kuo, W.F. Hsieh, S.C. Wang, Materials Science and Engineering: B, 134 (2006) 54–58.
[37] H. Yoo, R. Mauchauffe, and S. Y. Moon, Current Appl. Physic. 25 (2021) 18-23.
[38]         L. Roza, V. Fauzia, M.Y.A. Rahman, I. Isnaeni, P.A. Putro, Opt. Mater. (Amst). 109 (2020) 110360.
[39]         H. Sudrajat, S. Babel, J. Water Process Eng. 16 (2017) 309–318.
[40]         B. Ghanbari Shohany, A. Khorsand Zak, Ceram. Int. 46 (2020) 5507-5520.
[41] A. Nezamzadeh-Ejhieh, and E. Shahriari, J. Indust. Eng. Chem. 20 (2014) 2719-2726.
[42] M. Bahrami, and A. Nezamzadeh-Ejhieh, Mater. Sci. Semicond. Proces. 27 (2014) 833-840.
[43] B. Khodadadi, and M. Bordbar, Iran. J. Catal. 6 (2016) 37-42.
[44] M. Bordbar, S. Forghani-Pilerood, and A. Yeganeh-Faal, Iran. J. Catal.  6(5) (2016) 415-421.
[45] A. Noruozi, and A. Nezamzadeh-Ejhieh, Chem. Physic. Lett. 752 (2020) 137587.
[46] A. Yousefi, and A. Nezamzadeh-Ejhieh, Iran. J. Catal.  11(3) (2021) 247-259.
[47] M. Balakrishnan, and R. John, Iran. J. Catal. 10(1) (2020) 1-16.
[48] H. Derikvandi, and A. Nezamzadeh-Ejhieh, J. Photochem. Photobio. A: Chem. 348 (2017) 68-78.
[49] A. Sobhani-Nasab, M. Eghbali-Arani, S.M. Hosseinpour-Mashkani, F. Ahmadi, M. Rahimi-Nasrabadi, and V. Ameri, Iran. J. Catal. 10(2) (2020) 91-99.
[50] S. Senobari, and A. Nezamzadeh-Ejhieh, Spectrochimica Acta Part A: Mol. Biomol. Spec. 196 (2018) 334-343.
[51] A. Nezamzadeh-Ejhieh, and S. Hushmandrad, Appl. Catal. A: General 388(1-2) (2010) 149-159.
[52] A. Nezamzadeh-Ejhieh, and M. Karimi-Shamsabadi, Appl. Catal. A: General 477 (2014) 83-92.
[53] M. Karimi-Shamsabadi, and A. Nezamzadeh-Ejhieh, J. Mol. Catal. A: Chemical 418 (2016) 103-114.
[54] M. Mehrali-Afjani, A. Nezamzadeh-Ejhieh, and H. Aghaei, Chem. Phys. Lett. 759 (2020) 137873.
[55] S. Salmanderis, and A. Nezamzadeh-Ejhieh, Desali. Water Treat. 197 (2020) 200-212.
[56] B. Manikandan, K.R. Murali, and R. John, Iran. J. Catal. 11(1) (2021) 1-11.
[57]         H.F. Lin, S.C. Liao, S.W. Hung, J. Photochem. Photobiol. A Chem. 174 (2005) 82–87.
[58]         M. Nirmala, A. Anukaliani, Mater. Lett. 65 (2011) 2645-2648.
[59] S. T. Park, T. H. Kim, D. W. Park, App. Surf. Sci. 374 (2016) 257-264.
Volume 12, Issue 2
June 2022
Pages 181-188
  • Receive Date: 29 October 2021
  • Revise Date: 09 April 2022
  • Accept Date: 18 April 2022
  • First Publish Date: 20 May 2022