Lump Kinetic Method in Solving Kinetic Problems and Cracking Reaction Mechanism: A Review

Document Type : Reviews

Authors

1 Biofuel Research Group, Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Sriwijaya, Inderalaya 30662, South Sumatra, Indonesia

2 Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

Abstract

The development of an appropriate kinetic model for cracking reactions is essential for simulation and process optimization. These results are to be potentially used for proper reactor design. The complexities of oil gas inlet combinations have led to an increase in the challenges while defining and depicting kinetics on an intrinsic scale. Hence, complicated chemical reaction circumstances are characterized by combining many possible pathways into more modest groups of comparable chemical substances. In addition, cracking kinetic demonstrations is frequently carried out in lumped forms. This is due to the complex nature of the feedstock, which is known to contain enormous hydrocarbon associated with series and parallel reaction networks. The representation of complicated compounds by consolidating a large chemical component into small amounts of apparent components has been generally utilized in industry to generate a straightforward approach to stoichiometry, thermodynamics, and kinetics. Considering the importance of this lumped method, this study focused on studying the development of a kinetic lump approach to solve kinetic problems and cracking mechanisms.

Graphical Abstract

Lump Kinetic Method in Solving Kinetic Problems and Cracking Reaction Mechanism: A Review

Highlights

  • The lump kinetics model of cracking is intended to be useful for petrochemical operations
  • The lumping approach may produce dependable results in predicting product distribution
  • The lumping method could predict the parameter kinetic adequately than the conventional method
  • The higher the degree of the Lump technique, the better the model that could explain the cracking mechanism

Keywords


  1. G. Coxson, K.B. Bischoff, Ind. Eng. Chem. Res. 26 (1987) 1239–1248.
  2. Pitault, D. Nevicato, M. Forissier, J.R. Bernard, Chem. Eng. Sci. 49 (1994) 4249–4262.
  3. W. Weekman Jr, D. M. Nace, AIChE J. 16 (1970) 397–404.
  4. A.A. Twaiq, A.R. Mohamad, S. Bhatia, Fuel Process. Technol. 85 (2004) 1283–1300.
  5. Yared, H. Kurniawan, N. Wibisono, Y. Sudaryanto, H. Hindarso, S. Ismadji, ARPN J. Eng. Appl. Sci. 3 (2008) 55–61.
  6. Corma, B.W. Wojciechowski, Catal. Rev. 27 (1985) 29–150.
  7. Ancheyta, R. Sotelo, J. Mex. Chem. Soc. 46 (2002) 38–42.
  8. C. Yen, R.E. Wrench, A.S. Ong, Oil Gas J. 86 (1988) 67-70.
  9. A. Sedran, Catal. Rev. 36 (1994) 405–431.
  10. Gianetto, H.I. Farag, A.P. Blasetti, H.I. de Lasa, Ind. Eng. Chem. Res. 33 (1994) 3053–3062.
  11. Takatsuka, S. Sato, Y. Morimoto, H. Hashimoto, Int. Chem. Eng 27 (1987) 107–116.
  12. Ch, S. Sinha, Pet. Coal 51 (2009) 193-195.
  13. K.G Singh, S. Yusup, A.T. Quitain, B. Abdullah, A. Inayat, M. Ameen, K.W. Cheah, M. Sasaki, T. Kida, Y.H. Chai, Renew. Energy 171 (2021) 1445–1453.
  14. F. Froment, Catal. Rev. - Sci. Eng. 47 (2005) 83–124.
  15. M. Bollas, A.A. Lappas, D.K. Iatridis, I.A. Vasalos, Catal. Today 127 (2007) 31–43.
  16. R. Ayasse, H. Nagaishi, E.W. Chan, M.R. Gray, Fuel 76 (1997) 1025–1033.
  17. W. Wojciechowski, Can. J. Chem. Eng. 46 (1968) 48–52.
  18. A. Callejas, M.T. Martínez, Ind. Eng. Chem. Res. 38 (1999) 3285–3289.
  19. Cristina, Procedia Eng. 100 (2015) 602–608.
  20. Wu, Y. Cheng, Y. Jin, Ind. Eng. Chem. Res. 48 (2009) 12–26.
  21. Khongprom, S. Ratchasombat, W. Wanchan, P. Bumphenkiattikul, S. Limtrakul, RSC Adv. 10 (2020) 2897–2914.
  22. R. Hernández-Barajas, R. Vázquez-Román, M.G. Félix-Flores, Fuel 88 (2009) 169–178.
  23. Hasanudin, A. Rachmat, M. Said, K. Wijaya, Period. Polytech. Chem. Eng. 64 (2019) 238–247.
  24. F. Meier, V.R. Wiggers, G.R. Zonta, D.R. Scharf, E.L. Simionatto, L. Ender, Fuel 144 (2015) 50–59.
  25. Periyasamy, Fuel 158 (2015) 479–487.
  26. Schubert, A. Lechleitner, M. Lehner, W. Hofer, Fuel 262 (2020) 116597.
  27. Sadighi, A. Ahmad, M. Rashidzadeh, Korean J. Chem. Eng. 27 (2010) 1099–1108.
  28. Ancheyta-Juárez, F. López-Isunza, E. Aguilar-Rodríguez, Appl. Catal. A Gen. 177 (1999) 227–235.
  29. Guerra, R. Symonds, S. Bryson, C. Kirney, B. Di Bacco, A. Macchi, R. Hughes, Ind. Eng. Chem. Res. 58 (2019) 16417–16430.
  30. Van Landeghem, D. Nevicato, I. Pitault, M. Forissier, P. Turlier, C. Derouin, J.R. Bernard, Appl. Catal. A Gen. 138 (1996) 381–405.
  31. Ancheyta-Juárez, R. Sotelo-Boyás, Energy and Fuels 14 (2000) 1226–1231.
  32. Sertić-Bionda, Z. Gomzi, M. Mužic, Chem. Eng. Commun. 197 (2009) 275–288.
  33. Quintana-Solórzano, A. Rodríguez-Hernández, R. García-de-León, Ind. Eng. Chem. Res. 48 (2009) 1163–1171.
  34. Al-Sabawi, J.A. Atias, H. De Lasa, Ind. Eng. Chem. Res. 45 (2006) 1583–1593.
  35. Zheng, Q. Tang, T. Wang, J. Wang, Energy and Fuels 29 (2015) 1729–1734.
  36. J. Mu, H. Su, W. Li, J. Chu, J. Chem. Eng. Chinese Univ. 19 (2005) 630.
  37. Zhang, Z. Wang, Y. Jin, Z. Li, W. Yi, Chem. Eng. Res. Des. 119 (2017) 188–197.
  38. M. John, M.A. Mustafa, R. Patel, I.M. Mujtaba, Fuel 235 (2019) 1436–1454.
  39. A. Souza, J.V.C. Vargas, J.C. Ordonez, W.P. Martignoni, O.F. Von Meien, Int. J. Heat Mass Transf. 54 (2011) 1187–1197.
  40. P. Du, Q. Yang, H. Zhao, C.H. Yang, Appl. Petrochemical Res. 4 (2014) 423–433.
  41. Sadighi, A. Ahmad, A. Irandoukht, J. Chem. Eng. Japan 43 (2010) 174–185.
  42. Xiong, C. Lu, Z. Wang, X. Gao, Fuel 142 (2015) 65–72.
  43. G. Xu, H.Y. Su, S.J. Mu, J. Chu, J. Zhejiang Univ. Sci. 7 (2006) 1932–1941.
  44. L. Wang, G. Wang, B.J. Shen, C.M. Xu, J. Sen Gao, Ind. Eng. Chem. Res. 50 (2011) 12501–12511.
  45. Sheng, G. Wang, Q. Zhang, C. Gao, A. Ren, M. Duan, J. Gao, Energy and Fuels 31 (2017) 5037–5045.
  46. A. Olafadehan, O.P. Sunmola, A. Jaiyeola, V. Efeovbokhan, O.G. Abatan, Appl. Petrochemical Res. 8 (2018) 219–237.
  47. Gao, G. Wang, C. Xu, J. Gao, Energy and Fuels 28 (2014) 6554–6562.
  48. Jiang, S. Huang, Energy and Fuels 30 (2016) 10770–10776.
  49. Wang, B. Yang, Z. Wang, Chem. Eng. J. 109 (2005) 1–9.
  50. G. Sani, H.A. Ebrahim, M.J. Azarhoosh, Fuel 225 (2018) 322–335.
  51. Zhang, L. Li, Z. Liu, X. Meng, Int. J. Chem. Eng. 2016 (2016) 9148925.
  52. A. Ebrahimi, H. Mousavi, H. Bayesteh, J. Towfighi, Fuel 231 (2018) 118–125.
  53. You, Energy Sources, Part A Recover. Util. Environ. Eff. 36 (2014) 54–63.
  54. M. Arandes, I. Abajo, J. Bilbao, J. Aokziti, H.I. De Lasa, Chem. Eng. Commun. 190 (2003) 254–284.
  55. Y. Du, Q. Yang, C. Zhang, C. Yang, Appl.     Petrochemical Res. 5 (2015) 297–303.
Volume 12, Issue 2
June 2022
Pages 115-125
  • Receive Date: 09 March 2022
  • Revise Date: 04 May 2022
  • Accept Date: 12 May 2022
  • First Publish Date: 01 June 2022