Transition-metal modified mesoporous silica nanoparticles as highly effective heterogeneous catalysts for discoloration of Basic red 5 in aqueous solution

Document Type : Articles

Authors

1 Faculty of Chemistry, North Tehran Branch, Islamic Azad University, Hakimiyeh, Tehran, Iran.

2 Future Bioenergy Solutions Inc., North Vancouver, BC, V7P 3P9, Canada

Abstract

Mesoporous silica nanoparticles (MSNs) were synthesized hydrothermally and modified with Co2+ and Zn2+. The as-prepared samples were denoted as MSN, Co-MSN(X), and Zn-MSN(X), where X is the Si/M molar ratio. In addition, co-modified MSN samples with both cations were also prepared and denoted as Co-Zn(Y)-MSN(X), where Y indicates the Zn2+ content in the range of 1-7 wt.% relative to Co2+. Correctness of the anticipated structures was approved by FTIR, XRD, SEM, EDX, BET, and XRF analyses. It was found that Co-Zn(7)-MSN(75) can be used as an efficient photocatalyst for discoloration of basic red 5 under very mild conditions. Up to 86% of basic red 5 was discolored after 3.75 h under the optimized conditions including catalyst dosage of 0.025 mg mL-1, pH=7, and irradiation of 4×8 W UV (254 nm) lamps. By using the Langmuir–Hinshelwood kinetics model, it was found that the reaction followed a pseudo-first-order kinetic.

Graphical Abstract

Transition-metal modified mesoporous silica nanoparticles as highly effective heterogeneous catalysts for discoloration of Basic red 5 in aqueous solution

Highlights

  • Mesoporous silica nanoparticles were co-modified with Co2+, and Zn2+.
  • The product was denoted as Co-Zn(7)-MSN(75), with Si/Co= 75 and Zn/Co= 7 %.
  • Co-Zn(7)-MSN(75) showed high photocatalytic activity in discoloration of neutral red.
  • The optimized conditions include pH 7, 0.025 mg of catalyst, 0.5 M H2O2, and 32 W UV.
  • 86% of neutral red was discolored under very mild conditions within 225 min.

Keywords


[1] E. Borenfreund, J.A. Puerner, T Toxicol. Lett.  24 (1985) 119-124.
[2] H. Zollinger, Color Chemistry: syntheses, properties, and applications of organic dyes and pigments, John Wiley & Sons, New York, 2003.
[3] M. Iram, C. Guo, Y. Guan, A. Ishfaq, H. Liu, J. Hazard. Mater. 181 (2010) 1039-1050.
[4] M.M. Alnuaimi, M. Rauf, S.S. Ashraf, Dyes Pigm. 76 (2008) 332-337.
[5] F.M. Mpatani, A.A. Aryee, A.N. Kani, Q. Guo, E. Dovi, L. Qu, Z. Li, R. Han, Chemosphere, (2020) 127439.
[6] Y. Rong, Y. Huang, P. Jin, C. Yang, Z. Zhong, C. Dong, W. Liang, J. Water Process. Eng. 37 (2020) 101345.
[7] Y. Yao, G. Teng, Y. Yang, B. Ren, L. Cui, Sep. Purif. Technol. 227 (2019) 115684.
[8] J. Li, C. Shi, H. Zhang, X. Zhang, Y. Wei, K. Jiang, B. Zhang, Chemosphere, 218 (2019) 984-991.
[9] T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato, Bull. Chem. Soc. Jpn. 63 (1990) 988-992.
[10] C. Kresge, M. Leonowicz, W.J. Roth, J. Vartuli, J. Beck, Nature, 359 (1992) 710-712.
[11] A. Mourhly, M. Kacimi, M. Halim, S. Arsalane, Int. J. Hydrogen Energy 45 (2020) 11449-11459.
[12] P.T. Sharma, S. Choudhury, V. Chowdary, Mobile Sensors Deployment Methods: A Review,  Intelligent Communication, Control and Devices, Springer 2020, pp. 883-893.
[13] E. Bagheri, L. Ansari, E. Sameiyan, K. Abnous, S.M. Taghdisi, M. Ramezani, M. Alibolandi, Biosens. Bioelectron. 153 (2020) 112054.
[14] W. Lei, C. Sun, T. Jiang, Y. Gao, Y. Yang, Q. Zhao, S. Wang, Mater. Sci. Eng. C 105 (2019) 110103.
[15] Y. Shen, M. Li, T. Liu, J. Liu, Y. Xie, J. Zhang, S. Xu, H. Liu, Int. J. Nanomed. 14 (2019) 4029.
[16] D.F. Mohamad, N.S. Osman, M.K.H.M. Nazri, A.A. Mazlan, M.F. Hanafi, Y.A.M. Esa, M.I.I.M. Rafi, M.N. Zailani, N.N. Rahman, A.H. Abd Rahman, Mater. Today Proc. 19 (2019) 1119-1125.
[17] M.R. Sazegar, A. Dadvand, A. Mahmoudi, RSC Adv. 7 (2017) 27506-27514.
[18] H.C. Tayefe, M.R. Sazegar, A. Mahmoudi, K. Jadidi, Silicon, (2020) 1-10.
[19] J. Zhu, T. Wang, X. Xu, P. Xiao, J. Li, Appl. Catal. B Environ. 130 (2013) 197-217.
[20] V.A. Valles, Y. Sa-ngasaeng, M.L. Martínez, S. Jongpatiwut, A.R. Beltramone, Fuel, 240 (2019) 138-152.
[21] N.G. Hajiagha, A. Mahmoudi, M.R. Sazegar, M.M. Pouramini, Microporous Mesoporous Mater. 274 (2019) 43-53.
[22] H. Choopan Tayefe, M.R. Sazegar, A. Mahmoudi, K. Jadidi, J. Nanostruct. 9 (2019) 712-722.
[23] M. Rezaei, A. Nezamzadeh-Ejhieh, Int. J. Hydrogen Energ. 45 (2020): 24749-24764.
[24] N. Raeisi-Kheirabadi, A. Nezamzadeh-Ejhieh,  Int. J. Hydrogen Energ. 45 (2020): 33381-33395.
[25] F. Mahfoozi, A. Mahmoudi, M.R. Sazegar, K. Nazari, J. Sol-Gel Science &Technology.100 (2021) 170-182.
[26] S. Kumari, B.B. Dhar, C. Panda, A. Meena, S. Sen Gupta, ACS Appl. Mater. 6 (2014) 13866-13873.
[27] N. Jusoh, A. Jalil, S. Triwahyono, H. Setiabudi, N. Sapawe, M. Satar, A. Karim, N. Kamarudin, R. Jusoh, N. Jaafar, Appl. Catal. A 468 (2013) 276-287.
[28] M. Sazegar, A. Jalil, S. Triwahyono, R. Mukti, M. Aziz, M. Aziz, H. Setiabudi, N. Kamarudin, Chem. Eng. J. 240 (2014) 352-361.
[29] N.A. Neto, B. Dias, R. Tranquilin, E. Longo, M. Li, M. Bomio, F. Motta, J Alloys Compd. 823 (2020) 153617.
[30] S. Singh , R. Sharma, B. Raj Mehta, Appl. Surf. Sci.  411 (2017) 321–330    
[31] a) Chem. Phys. Lett. 759 (2020) 137873. ,  b)Iran. J. Catal. 11 (2021) 247-259,   c)Iran. J. Catal.11, 2021, 1-11,  d)  Desal. Water Treat. 197 (2020) 200-212
[32] V. Binas, D. Venieri, D. Kotzias, G. Kiriakidis, J. Materiomics 3 (2017) 3-16.
[33] D.F. Ollis, E. Pelizzetti, N. Serpone, Environ. Sci. Technol. 25 (1991) 1522-1529.
[34] C.S. Turchi, D.F. Ollis, J. Catal. 122 (1990) 178-192.
[35] I. Poulios, E. Micropoulou, R. Panou, E. Kostopoulou, Appl. Catal. B Environ. 41 (2003) 345-355.
[36] M. Amiri, A. Nezamzadeh-Ejhieh, Mat. Sci. Semicond. Proc. 31 (2015): 501-508.
[37] M. Czaplicka, J. Hazard. Mater. 134 (2006) 45-59.
[38] D.D. Dionysiou, M.T. Suidan, I. Baudin, J.-M. Laı̂né, Appl. Catal. B Environ. 50 (2004) 259-269.
[39] A. Pourtaheri, A. Nezamzadeh-Ejhieh, Spectrochim Acta A: Mol. Biomol. Spect. 137 (2015): 338-344.
[40] L. Furatian, M. Mohseni, J. Photochem. Photobiol. A: Chem. 356 (2018) 364-369.
[41] F. Soori, A. Nezamzadeh-Ejhieh, J. Mol. Liq. 255 (2018): 250-256.
[42] T. Oppenländer, Photochemical purification of water and air: advanced oxidation processes (AOPs)-principles, reaction mechanisms, reactor concepts, John Wiley & Sons, New York, 2007.
[43] C. Chan, S. Tao, R. Dawson, P. Wong, Environ. Pollut. 131 (2004) 45-54.
[44] A. Eyasu, O. Yadav, R. Bachheti, Int. J. Chem. Tech. Res. 5 (2013) 1452–1461.
[45] H. Bouchaaba , B. Bellal, R. Maachi, M. Trari , N. Nasrallah , A. Mellah, J. Taiwan Instit. Chem. Eng. 58 (2016): 310-317.
[46] K. Saeed, I. Khan, Turkish J. Chem. 41 (2017) 391-398.
[47] O. Sharma, M. K. Sharma, Int. J. Chem. Tech. Res. 5 (2013) 1615-1622.
[48] S. Fu, H. Niu, Z. Tao, J. Song, C. Mao, S. Zhang, C. Chen, D. Wang, J. Alloys Compd. 576 (2013) 5-12.
[49] S. Ghattavi, A. Nezamzadeh-Ejhieh, J. Mol. Liq. 322 (2021): 114563.
[50] S. Ghattavi, A. Nezamzadeh-Ejhieh, Desalin. Water Treat. 166 (2019): 92-104.
[51] S. Ghattavi, A. Nezamzadeh-Ejhieh, Int. J. Hydrog. Energy 45 (2020): 24636-24656.
Volume 12, Issue 2
June 2022
Pages 207-221
  • Receive Date: 15 January 2022
  • Revise Date: 21 May 2022
  • Accept Date: 05 June 2022
  • First Publish Date: 05 June 2022